Reminder: The AM-GM Inequality for two variables states that if a and b are nonnegative, then

$$
\frac{a+b}{2} \geq \sqrt{a b} .
$$

- Applying AM-GM to 1 and x, we have $\frac{1+x}{2} \geq \sqrt{(1)(x)}$. Multiplying both sides by 2 gives $1+x \geq 2 \sqrt{x}$.
- We work backwards to find our solution. We multiply both sides of the desired inequality by 2 and expand the right side to give us $2 x^{2}+2 y^{2} \geq x^{2}+2 x y+y^{2}$. Rearranging gives $x^{2}-2 x y+y^{2} \geq 0$, or $(x-y)^{2} \geq 0$. Now we have a path to our solution.
By the Trivial Inequality, we have $(x-y)^{2} \geq 0$. Expanding the left side and rearranging gives $x^{2}+y^{2} \geq 2 x y$. Adding $x^{2}+y^{2}$ to both sides gives $2 x^{2}+2 y^{2} \geq x^{2}+2 x y+y^{2}$. The right side is the square of $x+y$, so we have $2 x^{2}+2 y^{2} \geq(x+y)^{2}$. Dividing by 2 gives the desired $x^{2}+y^{2} \geq \frac{(x+y)^{2}}{2}$.
- We work backwards to find our solution. Multiplying both sides by $x y(x+y)$ (which doesn't change the direction of the inequality because x and y are positive), gives us

$$
y(x+y)+x(x+y) \geq 4 x y
$$

Rearranging this gives us $x^{2}+y^{2}-2 x y \geq 0$, which we know how to handle with the Trivial Inequality. Now we are ready to write our solution.
By the Trivial Inequality, we have $(x-y)^{2} \geq 0$. Expanding the left side, then adding $4 x y$ to both sides, gives $x^{2}+2 x y+y^{2} \geq 4 x y$. We rewrite the left side to give $x^{2}+x y+y^{2}+x y \geq 4 x y$, and a little factoring gives us $x(x+y)+y(x+y) \geq 4 x y$. Dividing both sides by $x y(x+y)$ (which doesn't change the direction of the inequality because x and y are positive), gives us the desired $\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$.

- The sums on the larger side make us think of AM-GM. We have

$$
\begin{aligned}
\frac{x+y}{2} & \geq \sqrt{x y}, \\
\frac{y+z}{2} & \geq \sqrt{y z}, \\
\frac{z+x}{2} & \geq \sqrt{z x} .
\end{aligned}
$$

Multiplying these three gives us

$$
\frac{(x+y)(y+z)(z+x)}{8} \geq \sqrt{x^{2} y^{2} z^{2}}
$$

Because $\sqrt{x^{2} y^{2} z^{2}}=x y z$, multiplying our inequality by 8 gives us the desired inequality $(x+y)(y+z)(z+x) \geq 8 x y z$.

- We put all the terms on one side, which gives us

$$
x^{2}+y^{2}-x y-x-y+1 \geq 0
$$

The $x^{2}+y^{2}-x y$ gets us thinking about $(x-y)^{2}$, which equals $x^{2}+y^{2}-2 x y$. We need only $-x y$, not $-2 x y$, so we consider

$$
\frac{(x-y)^{2}}{2}=\frac{x^{2}+y^{2}-2 x y}{2}=\frac{x^{2}+y^{2}}{2}-x y .
$$

That takes care of the $x y$ term, but now we need another $\frac{x^{2}}{2}$ and $\frac{y^{2}}{2}$. We can get an x^{2} term and an x term from $(x-1)^{2}$, which will also give us a 1 . We only want $x^{2} / 2$, so we consider $(x-1)^{2} / 2\left(\right.$ and $\left.(y-1)^{2} / 2\right)$:

$$
\begin{aligned}
& \frac{(x-1)^{2}}{2}=\frac{x^{2}-2 x+1}{2}=\frac{x^{2}}{2}+\frac{1}{2}-x \\
& \frac{(y-1)^{2}}{2}=\frac{y^{2}-2 y+1}{2}=\frac{y^{2}}{2}+\frac{1}{2}-y
\end{aligned}
$$

Now we have all our terms and we can use the Trivial Inequality to finish. The Trivial Inequality gives us

$$
\frac{(x-y)^{2}}{2}+\frac{(x-1)^{2}}{2}+\frac{(y-1)^{2}}{2} \geq 0
$$

and expanding the terms on the left side (and collecting like terms) gives $x^{2}+y^{2}-x y-x-$ $y+1 \geq 0$. A little rearranging then gives the desired $x^{2}+y^{2} \geq x y+x+y-1$.

- This looks a little like AM-GM, but with 4 variables instead of 2 . So, let's start by writing AM-GM twice:

$$
\begin{aligned}
\frac{w+x}{2} & \geq \sqrt{w x} \\
\frac{y+z}{2} & \geq \sqrt{y z}
\end{aligned}
$$

If we add these, we'll have $w+x+y+z$ on the left:

$$
\frac{w+x+y+z}{2} \geq \sqrt{w x}+\sqrt{y z} .
$$

We can get the product $w x y z$ by applying AM-GM to $\sqrt{w x}$ and $\sqrt{y z}$:

$$
\frac{\sqrt{w x}+\sqrt{y z}}{2} \geq \sqrt{\sqrt{w x} \sqrt{y z}}
$$

Simplifying the right side gives us $\sqrt[4]{w x y z}$ on the right, then multiplying by 2 gives us

$$
\sqrt{w x}+\sqrt{y z} \geq 2 \sqrt[4]{w x y z}
$$

Combining this with our earlier inequality for $w+x+y+z$ gives us

$$
\frac{w+x+y+z}{2} \geq \sqrt{w x}+\sqrt{y z} \geq 2 \sqrt[4]{w x y z}
$$

so we have

$$
\frac{w+x+y+z}{2} \geq 2 \sqrt[4]{w x y z}
$$

Dividing this by 2 gives us the desired

$$
\frac{w+x+y+z}{4} \geq \sqrt[4]{w x y z}
$$

For a much harder challenge, try proving $(x+y+z) / 3 \geq \sqrt[3]{x y z}$ for all nonnegative x, y, and z.

