Difference between revisions of "1995 AHSME Problems/Problem 20"

(@azjps: THANK YOU THANK YOU THANK YOU for putting solution + image up!)
(Problem)
Line 3: Line 3:
 
If <math>a,b</math> and <math>c</math> are three (not necessarily different) numbers chosen randomly and with replacement from the set <math>\{1,2,3,4,5 \}</math>, the probability that <math>ab + c</math> is even is
 
If <math>a,b</math> and <math>c</math> are three (not necessarily different) numbers chosen randomly and with replacement from the set <math>\{1,2,3,4,5 \}</math>, the probability that <math>ab + c</math> is even is
  
A. <math>\frac {2}{5}</math>
 
B. <math>\frac {59}{125}</math>
 
C. <math>\frac {1}{2}</math>
 
D. <math>\frac {64}{125}</math>
 
E. <math>\frac {3}{5}</math>
 
  
<math> \mathrm{(A) \ frac {2}{5} } \qquad \mathrm{(B) \ \frac {59}{125} } \qquad \mathrm{(C) \ \frac {1}{2} } \qquad \mathrm{(D) \ \frac {64}{125} } \qquad \mathrm{(E) \ \frac {3}{5} }  </math>
+
<math> \mathrm{(A) \ \frac {2}{5} } \qquad \mathrm{(B) \ \frac {59}{125} } \qquad \mathrm{(C) \ \frac {1}{2} } \qquad \mathrm{(D) \ \frac {64}{125} } \qquad \mathrm{(E) \ \frac {3}{5} }  </math>
  
 
== Solution ==
 
== Solution ==

Revision as of 11:31, 8 January 2008

Template:Wikify

Problem

If $a,b$ and $c$ are three (not necessarily different) numbers chosen randomly and with replacement from the set $\{1,2,3,4,5 \}$, the probability that $ab + c$ is even is


$\mathrm{(A) \ \frac {2}{5} } \qquad \mathrm{(B) \ \frac {59}{125} } \qquad \mathrm{(C) \ \frac {1}{2} } \qquad \mathrm{(D) \ \frac {64}{125} } \qquad \mathrm{(E) \ \frac {3}{5} }$

Solution

The probability of $ab$ being odd is $\left(\frac 35\right)^2 = \frac{9}{25}$, so the probability of $ab$ being even is $1 - \frac{9}{25} = \frac {16}{25}$.

The probability of $c$ being odd is $3/5$ and being even is $2/5$.

$ab+c$ is even if $ab$ and $c$ are both odd, with probability $\frac{9}{25} \cdot \frac{3}{5} = \frac{27}{125}$; or $ab$ and $c$ are both even, with probability $\frac{16}{25} \cdot \frac{2}{5} = \frac{32}{125}$. Thus the total probability is $\frac{59}{125} \Rightarrow \mathrm{(B)}$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions