2005 AMC 8 Problems/Problem 24

Problem

A certain calculator has only two keys [+1] and [x2]. When you press one of the keys, the calculator automatically displays the result. For instance, if the calculator originally displayed "9" and you pressed [+1], it would display "10." If you then pressed [x2], it would display "20." Starting with the display "1," what is the fewest number of keystrokes you would need to reach "200"?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12$

Solution 1 (Now rigorous)

We can start at $200$ and work our way down to $1$. We want to press the button that multiplies by $2$ the most, but since we are going down instead of up, we divide by $2$ instead. If we come across an odd number, then we will subtract that number by $1$. Notice

$200 \div 2 = 100$,  
$100 \div 2 = 50$,  
$50 \div 2 = 25$,
$25-1 = 24$,  
$24 \div 2 = 12$,  
$12 \div 2 = 6$,  
$6 \div 2 = 3$,  
$3-1 = 2$, 
$2 \div 2 = 1$.   

Since we've reached $1$, it's clear that the answer should be $\boxed{\textbf{(B)}\ 9}$- $\boxed{\textbf{Javapost}}$. Because we only subtracted $1$ when we had to, this is optimal. ~Roy2020

Solution 2 (Binary)

We make two key observations. First, pressing [x2] appends a $0$ to the end of a number's binary representation. Second, pressing [x2] and then pressing [+1] appends $1$ to the end of a number's binary representation.

The base-ten number $200$ is represented as $11001000_2$ in binary. Therefore, the five $0$s contribute $5$ button presses. Similarly, each of the three $1$s each contribute $2$ button presses, although we do not count one of them as the calculator initially starts with the number $1.$ Thus, the answer is $5 + 2 \cdot 2 = \boxed{\textbf{(B)}\ 9}$

See Also

2005 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png