2006 IMO Shortlist Problems/A4

Revision as of 11:46, 29 December 2007 by Boy Soprano II (talk | contribs) (New page: == Problem == Prove the inequality <cmath> \sum_{i<j} \frac{a_ia_j}{a_i+a_j} \le \frac{n}{2(a_1 + a_2 + \dotsb a_n)} \sum_{i<j} a_i a_j </cmath> for positive real numbers <math>a_1, \dots...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Prove the inequality \[\sum_{i<j} \frac{a_ia_j}{a_i+a_j} \le \frac{n}{2(a_1 + a_2 + \dotsb a_n)} \sum_{i<j} a_i a_j\] for positive real numbers $a_1, \dotsc, a_n$.

Solution

Note that \[\sum_{i<j} \frac{a_ia_j}{a_i+a_j} = 1/2 \sum_{i\neq j} \frac{a_ia_j}{a_i + a_j} = 1/2 \sum_{i=1}^n \sum_{j\neq i} \frac{1}{1/a_i + 1/a_j} .\] Suppose that $1 \le k \neq \ell \le n$. Note that $1/(1/a_i + 1/a_j)$ is an increasing function of both $a_i$ and $a_j$. It follows that if $a_k \le a_\ell$, then \[\sum_{j \neq k} \frac{1}{1/a_k + 1/a_j} \le \sum_{j\neq \ell} \frac{1}{a_\ell + a_j},\] i.e., $\sum_{j\neq i} \frac{1}{1/a_i + 1/a_j}$ is an increasing function of $j$.