2016 USAMO Problems/Problem 3

Revision as of 21:36, 17 October 2022 by Zsalomon (talk | contribs) (See also)

Problem

Let $\triangle ABC$ be an acute triangle, and let $I_B, I_C,$ and $O$ denote its $B$-excenter, $C$-excenter, and circumcenter, respectively. Points $E$ and $Y$ are selected on $\overline{AC}$ such that $\angle ABY = \angle CBY$ and $\overline{BE}\perp\overline{AC}.$ Similarly, points $F$ and $Z$ are selected on $\overline{AB}$ such that $\angle ACZ = \angle BCZ$ and $\overline{CF}\perp\overline{AB}.$

Lines $I_B F$ and $I_C E$ meet at $P.$ Prove that $\overline{PO}$ and $\overline{YZ}$ are perpendicular.

Solution

This problem can be proved in the following two steps.

1. Let $I_A$ be the $A$-excenter, then $I_A,O,$ and $P$ are colinear. This can be proved by the Trigonometric Form of Ceva's Theorem for $\triangle I_AI_BI_C.$

2. Show that $I_AY^2-I_AZ^2=OY^2-OZ^2,$ which implies $\overline{OI_A}\perp\overline{YZ}.$ This can be proved by multiple applications of the Pythagorean Thm.

Solution 2

2016 USAMO 3a.png

We find point $T$ on line $YZ,$ we prove that $TY \perp OI_A$ and state that $P$ is the point $X(24)$ from ENCYCLOPEDIA OF TRIANGLE, therefore $P \in OI_A.$

Let $\omega$ be circumcircle of $\triangle ABC$ centered at $O.$ Let $Y_1,$ and $Z_1$ be crosspoints of $\omega$ and $BY,$ and $CZ,$ respectively. Let $T$ be crosspoint of $YZ$ and $Y_1 Z_1.$ In accordance the Pascal theorem for pentagon $AZ_1BCY_1,$ $AT$ is tangent to $\omega$ at $A.$

2016 USAMO 3b.png

Let $I_A, I_B, I_C$ be $A, B,$ and $C$-excenters of $\triangle ABC.$ Denote \[a = BC, b = AC, c = AB, 2\alpha = \angle CAB, 2\beta = \angle ABC, 2\gamma = \angle ACB,\] \[\psi = 90^\circ – \gamma + \beta, X = AI_A \cap \omega, X_1 = BC \cap AI_A,\] \[I = BI_B  \cap CI_C, U= YZ \cap AI_A, W = Y_1Z_1 \cap AI_A,\] $V$ is the foot ot perpendicular from $O$ to $AI_A.$

$I$ is ortocenter of $\triangle I_A I_B I_C$ and incenter of $\triangle ABC.$

$\omega$ is the Nine–point circle of $\triangle I_A I_B I_C.$

$Y_1$ is the midpoint of $II_B, Z_1$ is the midpoint of $II_C$ in accordance with property of Nine–point circle $\implies$ \[Y_1Z_1 || I_B AI_C || VO, IW = AW \implies TW \perp AI.\] \[\angle AXC = 180 ^\circ – 2\gamma – \alpha = 90 ^\circ – \gamma + \beta = \psi.\] \[\angle TAI = \angle VOA = 2\beta + \alpha = 90 ^\circ – \gamma + \beta = \psi.\] \[I_A X_1 = IX_1 = BX_1 = 2R \sin \alpha \implies\] \[\cot \angle OI_A A = \frac {VI_A}{VO} = \frac {R \sin \psi + 2R \sin \alpha}{R \cos \psi} = \tan \psi + \frac{2 \sin\alpha}{\cos \psi}.\] \[CX = \frac {ab}{b+c} \implies \frac {AI}{IX}= \frac {AC}{CX}= \frac {b+c}{a} \implies AI = AX \frac {b+c}{a+b+c},\] \[AW = \frac {AI}{2}, UW = AU – AW,\] In $\triangle ABC$ segment $YZ$ cross segment $AX \implies \frac {AU}{UX} = \frac {m + nk}{k+1},$ where $n = \frac {a}{b}, m = \frac{a}{c}, k=\frac {b}{c},$ \[\frac {AU}{UX} = \frac{2a}{b+c} \implies  AU = AX \cdot \frac {b+c}{2a +b +c}.\] \[\frac {AU – AW}{AW} = \frac {b+c} {2a + b + c}.\]

2016 USAMO 3c.png

\[\cot \angle UTW = \frac {TW}{UW} = \frac {AW \cdot \tan \psi}{AU – AW} = \tan \psi \cdot \frac {2a +b+c}{b+c} =\] \[=\tan \psi \cdot \frac {2a}{b+c} + \tan \psi = \frac {2 \sin \alpha}{\sin \psi} \tan \psi + \tan \psi  = \tan \psi + \frac{2 \sin\alpha}{\cos \psi}\] \[\implies  \angle UTW = \angle OI_AA .\] \[TW \perp AI_A \implies TYZ \perp OI_A.\]

Let $\triangle II_B I_C$ be the base triangle with orthocenter $I_A,$ center of Nine-points circle $O \implies OI_A$ be the Euler line of $\triangle II_B I_C.$

$\triangle ABC$ is orthic triangle of $\triangle II_B I_C,$

$\triangle DEF$ is orthic-of-orthic triangle.

$P$ is perspector of base triangle and orthic-of-orthic triangle.

Therefore $P$ is point $X(24)$ of ENCYCLOPEDIA OF TRIANGLE CENTERS which lies on Euler line of the base triangle. [[1]]

2016 USAMO 3d.png

Claim \[\frac {AU}{UX} = \frac {m + nk}{k + 1}.\] Proof \[\frac {[AYZ]}{[ABC]} = \frac {AZ \cdot AY}{AB \cdot AC} = \frac {1}{(n + 1) \cdot (m+1)},\] \[\frac {[BXZ]}{[ABC]} = \frac {BZ \cdot BX}{AB \cdot BC} = \frac {n}{(n + 1) \cdot (k+1)},\] \[\frac {[CXY]}{[ABC]} = \frac {CY \cdot CX}{AC \cdot BC} = \frac {mk}{(m + 1) \cdot (k+1)},\] \[\frac {[XYZ]}{[ABC]} = 1 - \frac {[AYZ]}{[ABC]} – \frac {[BXZ]}{[ABC]} – \frac {[CXY]}{[ABC]}  = \frac {m+nk}{(m + 1) \cdot (k+1)\cdot (n+1)},\] \[\frac {AU}{UX} = \frac {[AYZ]}{[XYZ]} = \frac {m + nk}{k + 1}.\]

vladimir.shelomovskii@gmail.com, vvsss

See also

2016 USAMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png