Difference between revisions of "Cauchy-Schwarz Inequality"

(Examples)
Line 9: Line 9:
 
</math>,
 
</math>,
 
</center>
 
</center>
with equality when there exist constants <math> \displaystyle \mu, \lambda </math> not both zero such that for all <math> 1 \le i \le n </math>, <math> \displaystyle \mu a_i = \lambda b_i </math>.
+
with equality when there exist constants <math>\mu, \lambda </math> not both zero such that for all <math> 1 \le i \le n </math>, <math>\mu a_i = \lambda b_i </math>.
  
 
=== Proof ===
 
=== Proof ===
Line 15: Line 15:
 
There are several proofs; we will present an elegant one that does not generalize.
 
There are several proofs; we will present an elegant one that does not generalize.
  
Consider the vectors <math> \mathbf{a} = \langle a_1, \ldots a_n \rangle </math> and <math> {} \mathbf{b} = \langle b_1, \ldots b_n \rangle </math>.  If <math> \displaystyle \theta </math> is the [[angle]] formed by <math> \mathbf{a} </math> and <math> \mathbf{b} </math>, then the left-hand side of the inequality is equal to the square of the [[dot product]] of <math> \mathbf{a} </math> and <math> \mathbf{b} </math>, or <math> \left( ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos\theta \right)^2 </math>.  The right hand side of the inequality is equal to <math> \left( ||\mathbf{a}|| \cdot ||\mathbf{b}|| \right)^2 </math>.  The inequality then follows from <math> |\cos\theta | \le 1 </math>, with equality when one of <math> \mathbf{a,b} </math> is a multiple of the other, as desired.
+
Consider the vectors <math> \mathbf{a} = \langle a_1, \ldots a_n \rangle </math> and <math> {} \mathbf{b} = \langle b_1, \ldots b_n \rangle </math>.  If <math>\theta </math> is the [[angle]] formed by <math> \mathbf{a} </math> and <math> \mathbf{b} </math>, then the left-hand side of the inequality is equal to the square of the [[dot product]] of <math> \mathbf{a} </math> and <math> \mathbf{b} </math>, or <math> \left( ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos\theta \right)^2 </math>.  The right hand side of the inequality is equal to <math> \left( ||\mathbf{a}|| \cdot ||\mathbf{b}|| \right)^2 </math>.  The inequality then follows from <math> |\cos\theta | \le 1 </math>, with equality when one of <math> \mathbf{a,b} </math> is a multiple of the other, as desired.
  
 
=== Complex Form ===
 
=== Complex Form ===
Line 36: Line 36:
 
== General Form ==
 
== General Form ==
  
Let <math> \displaystyle V </math> be a [[vector space]], and let <math> \langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{R} </math> be an [[inner product]].  Then for any <math> \mathbf{a,b} \in V </math>,
+
Let <math>V </math> be a [[vector space]], and let <math> \langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{R} </math> be an [[inner product]].  Then for any <math> \mathbf{a,b} \in V </math>,
 
<center>
 
<center>
 
<math>
 
<math>
Line 42: Line 42:
 
</math>,
 
</math>,
 
</center>
 
</center>
with equality if and only if there exist constants <math> \displaystyle \mu, \lambda </math> not both zero such that <math> \mu\mathbf{a} = \lambda\mathbf{b} </math>.
+
with equality if and only if there exist constants <math>\mu, \lambda </math> not both zero such that <math> \mu\mathbf{a} = \lambda\mathbf{b} </math>.
  
 
=== Proof 1 ===
 
=== Proof 1 ===
Line 52: Line 52:
 
</math>.
 
</math>.
 
</center>
 
</center>
This must always be greater than or equal to zero, so it must have a non-positive discriminant, i.e., <math> \langle \mathbf{a,b} \rangle^2 </math> must be less than or equal to <math> \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle </math>, with equality when <math> \mathbf{a = 0} </math> or when there exists some scalar <math> \displaystyle -t </math> such that <math> -t\mathbf{a} = \mathbf{b} </math>, as desired.
+
This must always be greater than or equal to zero, so it must have a non-positive discriminant, i.e., <math> \langle \mathbf{a,b} \rangle^2 </math> must be less than or equal to <math> \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle </math>, with equality when <math> \mathbf{a = 0} </math> or when there exists some scalar <math>-t </math> such that <math> -t\mathbf{a} = \mathbf{b} </math>, as desired.
  
 
=== Proof 2 ===
 
=== Proof 2 ===
Line 97: Line 97:
 
* [http://www.amazon.com/exec/obidos/ASIN/052154677X/artofproblems-20 The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities] by J. Michael Steele.
 
* [http://www.amazon.com/exec/obidos/ASIN/052154677X/artofproblems-20 The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities] by J. Michael Steele.
 
* [http://www.amazon.com/exec/obidos/ASIN/0387982191/artofproblems-20 Problem Solving Strategies] by Arthur Engel contains significant material on inequalities.
 
* [http://www.amazon.com/exec/obidos/ASIN/0387982191/artofproblems-20 Problem Solving Strategies] by Arthur Engel contains significant material on inequalities.
 +
 +
 +
[[Category:Inequalities]]
 +
[[Category:Algebra]]
 +
[[Category:Number Theory]]

Revision as of 22:03, 14 October 2007

The Cauchy-Schwarz Inequality (which is known by other names, including Cauchy's Inequality, Schwarz's Inequality, and the Cauchy-Bunyakovsky-Schwarz Inequality) is a well-known inequality with many elegant applications.

Elementary Form

For any real numbers $a_1, \ldots, a_n$ and $b_1, \ldots, b_n$,

$\left( \sum_{i=1}^{n}a_ib_i \right)^2 \le \sum_{i=1}^{n}a_i^2 \sum_{i=1}^{n}b_i^2$,

with equality when there exist constants $\mu, \lambda$ not both zero such that for all $1 \le i \le n$, $\mu a_i = \lambda b_i$.

Proof

There are several proofs; we will present an elegant one that does not generalize.

Consider the vectors $\mathbf{a} = \langle a_1, \ldots a_n \rangle$ and ${} \mathbf{b} = \langle b_1, \ldots b_n \rangle$. If $\theta$ is the angle formed by $\mathbf{a}$ and $\mathbf{b}$, then the left-hand side of the inequality is equal to the square of the dot product of $\mathbf{a}$ and $\mathbf{b}$, or $\left( ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cos\theta \right)^2$. The right hand side of the inequality is equal to $\left( ||\mathbf{a}|| \cdot ||\mathbf{b}|| \right)^2$. The inequality then follows from $|\cos\theta | \le 1$, with equality when one of $\mathbf{a,b}$ is a multiple of the other, as desired.

Complex Form

The inequality sometimes appears in the following form.

Let $a_1, \ldots, a_n$ and $b_1, \ldots, b_n$ be complex numbers. Then

$\left| \sum_{i=1}^na_ib_i \right|^2 \le \sum_{i=1}^{n}|a_i^2| \sum_{i=1}^n |b_i^2|$.

This appears to be more powerful, but it follows immediately from

$\left| \sum_{i=1}^n a_ib_i \right| ^2 \le \left( \sum_{i=1}^n |a_i| \cdot |b_i| \right)^2 \le \sum_{i=1}^n |a_i^2| \sum_{i=1}^n |b_i^2|$.

General Form

Let $V$ be a vector space, and let $\langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{R}$ be an inner product. Then for any $\mathbf{a,b} \in V$,

$\langle \mathbf{a,b} \rangle^2 \le \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle$,

with equality if and only if there exist constants $\mu, \lambda$ not both zero such that $\mu\mathbf{a} = \lambda\mathbf{b}$.

Proof 1

Consider the polynomial of $t$

$\langle t\mathbf{a + b}, t\mathbf{a + b} \rangle = t^2\langle \mathbf{a,a} \rangle + 2t\langle \mathbf{a,b} \rangle + \langle \mathbf{b,b} \rangle$.

This must always be greater than or equal to zero, so it must have a non-positive discriminant, i.e., $\langle \mathbf{a,b} \rangle^2$ must be less than or equal to $\langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle$, with equality when $\mathbf{a = 0}$ or when there exists some scalar $-t$ such that $-t\mathbf{a} = \mathbf{b}$, as desired.

Proof 2

We consider

$\langle \mathbf{a-b, a-b} \rangle = \langle \mathbf{a,a} \rangle + \langle \mathbf{b,b} \rangle - 2 \langle \mathbf{a,b} \rangle$.

Since this is always greater than or equal to zero, we have

$\langle \mathbf{a,b} \rangle \le \frac{1}{2} \langle \mathbf{a,a} \rangle + \frac{1}{2} \langle \mathbf{b,b} \rangle$.

Now, if either $\mathbf{a}$ or $\mathbf{b}$ is equal to $\mathbf{0}$, then $\langle \mathbf{a,b} \rangle^2 = \langle \mathbf{a,a} \rangle \langle \mathbf{b,b} \rangle = 0$. Otherwise, we may normalize so that $\langle \mathbf {a,a} \rangle = \langle \mathbf{b,b} \rangle = 1$, and we have

$\langle \mathbf{a,b} \rangle \le 1 = \langle \mathbf{a,a} \rangle^{1/2} \langle \mathbf{b,b} \rangle^{1/2}$,

with equality when $\mathbf{a}$ and $\mathbf{b}$ may be scaled to each other, as desired.

Examples

The elementary form of the Cauchy-Schwarz inequality is a special case of the general form, as is the Cauchy-Schwarz Inequality for Integrals: for integrable functions $f,g : [a,b] \mapsto \mathbb{R}$,

$\left( \int_{a}^b f(x)g(x)dx \right)^2 \le \int_{a}^b [f(x)]^2dx \cdot \int_a^b [g(x)]^2 dx$,

with equality when there exist constants $\mu, \lambda$ not both equal to zero such that for $t \in [a,b]$,

$\mu \int_a^t f(x)dx = \lambda \int_a^t g(x)dx$.

Other Resources

Books