Directed graph

Revision as of 15:15, 7 January 2008 by JBL (talk | contribs) (New page: A '''directed graph''' (sometimes abbreviated ''digraph'') is a graph in which each edge is assigned an orientation. Formally, a digraph <math>D</math> is a pair, <math>D = (V, E)...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

A directed graph (sometimes abbreviated digraph) is a graph in which each edge is assigned an orientation. Formally, a digraph $D$ is a pair, $D = (V, E) = (V(D), E(D))$ of a (usually finite) set $V$ of vertices together with a multiset $E$ of edges such that for each $e \in E$ we have $e \in V \times V$.

Every digraph has a natural underlying graph $G(D) = (V(D), E')$ where $E' = \left\{\{v, w\} \mid (v, w) \in E\right\}$. A digraph is usually drawn by drawing the underlying graph and putting an arrow on each edge to indicate the direction.

Note that our definition allows both loops and multiple edges. In other circumstances, digraphs may be defined to be loopless, simple (that is, with no multiple edges) or both. Note that the "right" convention for digraphs is less obvious than for graphs. In particular, sometimes the word "simple" is meant to allow both the edge $(v, w)$ and the edge $(w, v)$, so the underlying graph of a simple digraph is not necessarily simple. In any case, one should be sure to provide the definition of these terms before first using them.

Common examples of directed graphs

Tournament graph

In a round robin tournament (that is, a tournament in which each team plays every other team exactly once) with no ties, we can associate a tournament graph in which we draw the edge $(A, B)$ if and only if team $A$ beat team $B$.

Complete digraph

The definition of a complete digraph depends on the particular definition of digraph that we use. The simplest version corresponds to the definition we gave above, for which the complete digraph on a vertex set $V$ is the pair $K(V) = (V, V \times V)$, i.e. for each vertex $v \in V$ we have an edge $(v, v)$ and for each pair $v, w \in V$ we have both edges $(v, w)$ and $(w, v)$.


See Also