Sophie Germain Identity

Revision as of 08:55, 6 June 2010 by Ayush 2008 (talk | contribs) (Problems)

The Sophie Germain Identity states that:

$a^4 + 4b^4 = (a^2 + 2b^2 + 2ab)(a^2 + 2b^2 - 2ab)$

One can prove this identity simply by multiplying out the right side and verifying that it equals the left. To derive the factoring, first completing the square and then factor as a difference of squares:

$\begin{align*}a^4 + 4b^4 & = a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 \\ & = (a^2 + 2b^2)^2 - (2ab)^2 \\ & = (a^2 + 2b^2 - 2ab) (a^2 + 2b^2 + 2ab)\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

Problems

Introductory

Intermediate

  • Compute $\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}$. (1987 AIME, #14)
  • Find the largest prime divisor of $25^2+72^2$. ([[Mock AIME 5 2005-2006 Problems/Pro

See Also