439. Properties of medians in triangle ABC and applications.
by Virgil Nicula, Jan 23, 2016, 2:10 PM
An fantastic inequality.
Proof.
P1 (Borislav Mirchev). Prove that in any acute or right triangle
there is the inequality 
Proof. Apply the Walker's inequality:

. Observe that
, what is true. Hence required inequality is true.
P2 (own). Prove that in any acute or right triangle
there is the inequality 
Proof. Denote the midpoints
and
(south !) of
and the smaller arc
. I"ll use the well known (prove easily!) relations
.
Apply in
the inequality



P3 (own). Prove that in any triangle
there is the inequality 
Proof.


what is truly. I have equality iff
.
P4. Prove that in any acute triangle
there is the inequality
.
Proof 1. Denote the diameter
of circumcircle
and
. Is well known that
and
, where
is the
orthocenter. In the isosceles triangle
apply the inequality
. Since

obtain that
.
Remark. Apply the theorem of median in

Proof 2. Apply in
the inequality

.
Proof 3. Apply in
the inequality

.
P5. The incircle of
touches
,
,
at
respectively. The median
meet again the circumcircle
at
, where
.
Let
and
. Prove that
and
and
.
P6. Prove that in any
exists the inequality
(standard notations).
Proof.
P7. Let
with the lengths
of its medians. Find
.
Proof 1. Denote the centroid
of
, the midpoint
of
and the symmetrical point
of
w.r.t.
. Observe that
is the median in 
and
. Thus,
a.s.o.
Proof 2. Solve the system
. Obtain that
and 
a.s.o.
P8. Let
be a triangle so that
. The medians
,
,
( where
,
,
)
intersect again the circumcircle
of
at
,
,
respectively. Prove that
.
Proof. Apply the power of the points
,
,
w.r.t. circle
:

Apply the equivalence of areas and Ptolemeu's therem to the quadrilaterals
,
,
:

Apply Ptolemeu's theorem to the quadrilaterals
,
:
. Therefore,
.
Generalization. Let
be a triangle,
with the circumcircle
. For an interior point
denote the second intersections
,
,
of the
circle
with
,
,
respectively. Prove that
.
Remark. I denoted by
the point
with the the barycentrical coordinates
w.r.t. the triangle
. Here are two particular cases.
- centroid :
.
- incenter :
.
a.s.o.
![$b^2\cdot\left[2\left(a^2+c^2\right)-b^2\right]=c^2\cdot\left[2\left(a^2+b^2\right)-c^2\right]\iff$](//latex.artofproblemsolving.com/8/2/d/82d5ce319d686126352ef768b0888d19e8be587b.png)
because
.
Lemma (well-known). Let
and
,
so that
. Denote the middlepoints
,
of
,
respectively. Prove that :
If
doesn't separate
,
then
is parallel with the internal bisector of
if
separates
,
then
is parallel withe the external bisector of
.
Proof 1. Denote
so that the rays
,
are respectively the internal and external bisectors of the angle
. Define
the reflection
of the point
w.r.t. the point
. Observe that
,
,
, i.e.
is
- isosceles.

Remark. Let mobile
,
so that
. Then the geometrical locus of the midpoint of
is
.
Proof 2. Let
so that
. Denote the midpoints
,
,
,
of
,
,
,
,
respectively.
Prove easily that
is a rhombus (
,
) and
. Thus,
, i.e.
and
.
Remark. Let
be a convex quadrilateral so that
and
. Denote the midpoints
of
,
,
,
respectively.
Then
,
are parallel respectively to the internal and external bisectors of
.
P9. Let
be an acute triangle with the centroid
and the circumcircle
. Denote 
and the diameter
of
. Prove that
. Have the equality iff
.
Proof. Let the midpoint
of
and
.Thus,
and from the power
of
w.r.t.
obtain that
. Have
the equality iff
.
P10.
(notatii standard).
Proof 1.


what is true.
Proof 2. Let
and apply the Ptolemy's inequality in

P11 (Adil Abdullayev). Prove that
exists the inequality
(notatii standard).
Proof. I"ll use the remarkable inequality
and the conclusion of the previous problem
Thus 
Hence 
![$6\left(s^2-r^2-4Rr\right)+8\left(5R^2+2Rr+3r^2\right)\ \stackrel{(*)}{\le}\ 6\left[\left(4R^2+\cancel{4Rr}+3r^2\right)-\left(r^2+\cancel{4Rr}\right)\right]+$](//latex.artofproblemsolving.com/8/1/7/8171264debb2c59f4efc64bdb559f45235091ead.png)

P12 (Adil Abdullayev). Prove
there is the following inequality
(standard notations).
An interesting substitution in the geometry of a triangle. Denote
For example 
![$\blacktriangleright\ \left\|\begin{array}{ccccccc}
2bc\cdot\cos A & = & b^2+c^2-a^2=(x+z)^2+(x+y)^2-(y+z)^2=2[s(s-a)-(s-b)(s-c)] & \implies & s(s-a)-(s-b)(s-c) & = & bc\cdot \cos A\\\\
bc & = & (x+z)(x+y)=x^2+x(y+z)+yz=x(x+y+z)+yz=s(s-a)+(s-b)(s-c) & \implies & s(s-a)+(s-b)(s-c) & = & bc\end{array}\right\|\implies$](//latex.artofproblemsolving.com/c/1/8/c1846a0636aff39fa8e37b8d44f6fba7b89f5398.png)


Proof.
So 
what is Blundon & Gerretsen's inequality.
P13 (Adil Abdullayev). Prove
there is the following inequality
(standard notations).
Proof.
Suppose that is
well-known the inequality
I"ll prove
Indeed,

what is true. From the relations
and
obtain the required inequality 
P14. https://scontent.fotp3-3.fna.fbcdn.net/v/t1.0-9/21150439_10155064914552833_6318925499382620265_n.jpg?oh=71590900f4f7dd485f267982266a6b8e&oe=5A59174B.
Proof. I''l apply the following simple inequalities
Hence


Proof.
P1 (Borislav Mirchev). Prove that in any acute or right triangle


Proof. Apply the Walker's inequality:






P2 (own). Prove that in any acute or right triangle


Proof. Denote the midpoints


![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)


Apply in









P3 (own). Prove that in any triangle


Proof.

![$4m_b^2\cdot 4m_c^2=\left[2a^2+\left(2c^2-b^2\right)\right]\cdot \left[2a^2+\left(2b^2-c^2\right)\right]\le\left(2a^2+bc\right)^2\iff$](http://latex.artofproblemsolving.com/9/5/7/95787359904fbc93e95e2c2c04d7cc6104e36165.png)





![$(b-c)^2\left[(b+c)^2-a^2\right]\ge 0\iff$](http://latex.artofproblemsolving.com/0/2/5/02581aad852b96013d31ed23b9dbf39e339d554e.png)


P4. Prove that in any acute triangle


Proof 1. Denote the diameter
![$[AR]$](http://latex.artofproblemsolving.com/f/b/2/fb23872e3c3a0f2c173374181229c9b92c5e337d.png)





orthocenter. In the isosceles triangle





obtain that




Remark. Apply the theorem of median in

![$2\left[\left(4R^2-c^2\right)+\left(4R^2-b^2\right)\right]-a^2=$](http://latex.artofproblemsolving.com/7/6/1/7617e7b5259575b1abc3d9535f31af77a9b69e1c.png)



Proof 2. Apply in







Proof 3. Apply in









P5. The incircle of









Let





P6. Prove that in any


Proof.
P7. Let



Proof 1. Denote the centroid



![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)



![$[BM]$](http://latex.artofproblemsolving.com/b/8/d/b8df50365ac4274a59b15564d2715bbc99693b79.png)





![$a^2=\frac 49\cdot \left[2\left(m_b^2+m_c^2\right)-m_a^2\right]\iff$](http://latex.artofproblemsolving.com/d/1/4/d145866d13cec7fca549c3ae9858fc8fb67bc742.png)

Proof 2. Solve the system



![$12\cdot\left[2\left(m_b^2+m_c^2\right)-m_a^2\right]\implies$](http://latex.artofproblemsolving.com/5/1/0/510f3698700c61243298145ed6f55b3999d20e0e.png)
![$a^2=\frac {\Delta_a}{\Delta}=\frac 49\cdot \left[2\left(m_b^2+m_c^2\right)-m_a^2\right]\implies$](http://latex.artofproblemsolving.com/5/d/4/5d41a1a6cefbc482d8b8017685141c494f7478c1.png)

P8. Let








intersect again the circumcircle






Proof. Apply the power of the points





Apply the equivalence of areas and Ptolemeu's therem to the quadrilaterals




Apply Ptolemeu's theorem to the quadrilaterals








Generalization. Let







circle




![$ LM = LN\ \Longleftrightarrow\ x\left[\left(zb^4 - yc^4\right) + (y - z)b^2c^2\right] = a^2\left[z(x + z)b^2 - y(x + y)c^2\right]$](http://latex.artofproblemsolving.com/1/5/7/1579beeea3228c4e8ce80c9a329fc3eb3ec9f8a2.png)
Remark. I denoted by








a.s.o.


![$b^2\cdot\left[2\left(a^2+c^2\right)-b^2\right]=c^2\cdot\left[2\left(a^2+b^2\right)-c^2\right]\iff$](http://latex.artofproblemsolving.com/8/2/d/82d5ce319d686126352ef768b0888d19e8be587b.png)




Lemma (well-known). Let






![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)
![$ [MN]$](http://latex.artofproblemsolving.com/b/6/d/b6d9ce210c89713ee87840b48f477522ee16651e.png)
If










Proof 1. Denote




the reflection









Remark. Let mobile



![$ [MN]$](http://latex.artofproblemsolving.com/b/6/d/b6d9ce210c89713ee87840b48f477522ee16651e.png)

Proof 2. Let







![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$ [MN]$](http://latex.artofproblemsolving.com/b/6/d/b6d9ce210c89713ee87840b48f477522ee16651e.png)
![$ [M'N]$](http://latex.artofproblemsolving.com/a/8/7/a87db42c727d030e3de56fe3cbd76c9409f3ff7d.png)
![$ [MN']$](http://latex.artofproblemsolving.com/2/8/4/284b6842128ad75dc986e6f180880bf6ba5dad7c.png)
![$ [M'N']$](http://latex.artofproblemsolving.com/c/7/2/c72f6d950e19fe8c6bdc2d19fde4f9ad08741f3e.png)
Prove easily that







Remark. Let




![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)
![$ [AD]$](http://latex.artofproblemsolving.com/c/e/9/ce95813fbf4bf5556fed7cec30ffda07c992059a.png)
![$ [AC]$](http://latex.artofproblemsolving.com/5/b/0/5b08b2b92472414250205866b93405af4772e86c.png)
![$ [BD]$](http://latex.artofproblemsolving.com/d/c/b/dcbd5508fb6ff0fed24eeb0a1cdea8a488833e57.png)
Then



P9. Let




and the diameter
![$[SN]$](http://latex.artofproblemsolving.com/4/2/c/42c406d7fff970657b35445127481e58df4f1984.png)



Proof. Let the midpoint

![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)













the equality iff





P10.

Proof 1.


![$\left[2\left(a^2+c^2\right)-b^2\right]\cdot \left[2\left(a^2+b^2\right)-c^2\right]\le 4a^4+4a^2bc+b^2c^2\iff$](http://latex.artofproblemsolving.com/2/5/3/253bdd66f802665fff7ec6321ed3c3ca7400d456.png)






![$(b-c)^2\left[(b+c)^2-a^2\right]\ge 0\iff$](http://latex.artofproblemsolving.com/0/2/5/02581aad852b96013d31ed23b9dbf39e339d554e.png)


Proof 2. Let



P11 (Adil Abdullayev). Prove that


Proof. I"ll use the remarkable inequality












![$6\left(s^2-r^2-4Rr\right)+8\left(5R^2+2Rr+3r^2\right)\ \stackrel{(*)}{\le}\ 6\left[\left(4R^2+\cancel{4Rr}+3r^2\right)-\left(r^2+\cancel{4Rr}\right)\right]+$](http://latex.artofproblemsolving.com/8/1/7/8171264debb2c59f4efc64bdb559f45235091ead.png)





P12 (Adil Abdullayev). Prove


An interesting substitution in the geometry of a triangle. Denote


![$\blacktriangleright\ \left\|\begin{array}{ccccccc}
2bc\cdot\cos A & = & b^2+c^2-a^2=(x+z)^2+(x+y)^2-(y+z)^2=2[s(s-a)-(s-b)(s-c)] & \implies & s(s-a)-(s-b)(s-c) & = & bc\cdot \cos A\\\\
bc & = & (x+z)(x+y)=x^2+x(y+z)+yz=x(x+y+z)+yz=s(s-a)+(s-b)(s-c) & \implies & s(s-a)+(s-b)(s-c) & = & bc\end{array}\right\|\implies$](http://latex.artofproblemsolving.com/c/1/8/c1846a0636aff39fa8e37b8d44f6fba7b89f5398.png)

![$\blacktriangleright\ X\equiv \sum\frac {yz}x=\frac 1{xyz}\cdot \sum(yz)^2=\frac 1{sr^2}\cdot\left[\left(\sum yz\right)^2-2xyz(x+y+z)\right]=$](http://latex.artofproblemsolving.com/2/5/a/25a9699768d12d8f93ea7de24891265cdcf4c072.png)


Proof.
![$\sum\frac {\cot A}{s-a}=\sum\frac {b^2+c^2-a^2}{4S(s-a)}=\frac 1{4sr}\cdot \sum\frac {2[x(x+y+z)-yz]}x=$](http://latex.artofproblemsolving.com/3/e/9/3e992bfa24eb7fde304fcf90ac4376c4636935fb.png)

![$\frac 1{2sr}\cdot (3s-X)\ \stackrel{(*)}{=}\ \frac 1{2sr}\cdot\left[5s-\frac {(4R+r)^2}s\right].$](http://latex.artofproblemsolving.com/8/d/c/8dc94f9296151ec313d7bdca6c4385be78cc7d15.png)

![$\frac 1{\cancel 2s\cancel r}\cdot\left[5s-\frac {(4R+r)^2}s\right]\le \frac {R+2r}{\cancel 2R\cancel r}$](http://latex.artofproblemsolving.com/5/0/8/5089e686697ffda8bef317ed48b2f4d82f1b40e2.png)

![$R\left[5s^2-(4R+r)^2\right]\le s^2(R+2r)\iff$](http://latex.artofproblemsolving.com/b/2/7/b271fda9494ad77143ba4f526591ec3410d698ac.png)


P13 (Adil Abdullayev). Prove


Proof.







well-known the inequality










P14. https://scontent.fotp3-3.fna.fbcdn.net/v/t1.0-9/21150439_10155064914552833_6318925499382620265_n.jpg?oh=71590900f4f7dd485f267982266a6b8e&oe=5A59174B.
Proof. I''l apply the following simple inequalities



This post has been edited 145 times. Last edited by Virgil Nicula, Sep 6, 2017, 12:30 PM