439. Properties of medians in triangle ABC and applications.

by Virgil Nicula, Jan 23, 2016, 2:10 PM

An fantastic inequality. $\boxed{4s^2-28Rr+29r^2\le \left(m_a+m_b+m_c\right)^2\le 4s^2-16Rr+5r^2}\ (*)\ .$

Proof.


P1 (Borislav Mirchev). Prove that in any acute or right triangle $ABC$ there is the inequality $\boxed{m_a+m_b+m_c\ge 2R+5r}\ (2)\ .$

Proof. Apply the Walker's inequality: $\boxed{s^2\ge 2R^2+8Rr+3r^2}\ (1)\ :\ \left(m_a+m_b+m_c\right)^2\ \stackrel{(*)}{\ge}\ 4s^2-28Rr+$ $29r^2\ \stackrel{(1)}{\ge}\ 8R^2+$ $32Rr+12r^2-28Rr+29r^2=$

$8R^2+4Rr+41r^2$ . Observe that $8R^2+4Rr+41r^2\ge (2R+5r)^2\iff$ $4R^2-16Rr+16r^2\ge 0\iff 4(R-2r)^2\ge 0$ , what is true. Hence required inequality is true.


P2 (own). Prove that in any acute or right triangle $ABC$ there is the inequality $\boxed{m_a+m_b+m_c\ge 5r+2\sqrt{2Rr}}\ (3)\ .$
Proof. Denote the midpoints $M$ and $S$ (south !) of $[BC]$ and the smaller arc $\overarc{BC}$ . I"ll use the well known (prove easily!) relations $\left\{\begin{array}{cc}
\cos\frac {B-C}2\ge\sqrt{\frac {2r}R} & (4)\\\\
MS=\frac {r_a-r}2=\frac {ar}{2(s-a)} & (5)\\\\
am_a+bm_b+cm_c\ge 6sr & (6)\end{array}\right\|$ .

Apply in $\triangle AMS$ the inequality $AS\le MA+MS\iff$ $2R\cos\frac {B-C}2\le m_a+2R(1-\cos A)\ \stackrel{4\wedge 5}{\implies}$ $2R\sqrt{\frac {2r}R}\le m_a+\frac {ar}{2(s-a)}\iff$

$ar+2(s-a)m_a\ge 4(s-a)\sqrt{2Rr}\iff$ $ar+2sm_a\ge 2am_a+4(s-a)\sqrt{2Rr}\ \stackrel{\sum}{\implies}\ 2sr+2s\sum m_a\ge 2\sum am_a+4s\sqrt{2Rr}\ \stackrel{(6)}{\iff}$

$2sr+2s\sum m_a\ge 12sr+4s\sqrt{2Rr}\iff$ $r+\sum m_a\ge 6r+2\sqrt{2Rr}\iff$ $m_a+m_b+m_c\ge 5r+2\sqrt{2Rr}\ .$


P3 (own). Prove that in any triangle $ABC$ there is the inequality $\boxed{4m_bm_c\le 2a^2+bc}\ (7)\ .$

Proof. $4m_bm_c\le 2a^2+bc\iff$ $4m_b^2\cdot 4m_c^2=\left[2a^2+\left(2c^2-b^2\right)\right]\cdot \left[2a^2+\left(2b^2-c^2\right)\right]\le\left(2a^2+bc\right)^2\iff$ $4a^4+2a^2\left(b^2+c^2\right)+\left(2c^2-b^2\right)\left(2b^2-c^2\right)\le $

$4a^4+4a^2bc+b^2c^2\iff$ $2a^2\left(b^2+c^2\right)+4b^2c^2-2\left(b^4+c^4\right)\le 4a^2bc\iff$ $2a^2\left(b^2+c^2-2bc\right)\le 2\left(b^4+c^4-2b^2c^2\right)\iff$ $a^2(b-c)^2\le \left(b^2-c^2\right)^2\iff$

$(b-c)^2\left[(b+c)^2-a^2\right]\ge 0\iff$ $4s(s-a)(b-c)^2\ge 0\iff (b-c)^2\ge 0$ what is truly. I have equality iff $b=c$ .


P4. Prove that in any acute triangle $ABC$ there is the inequality $\boxed{b^2+c^2\le 4Rm_a}\ (8)\ .$ .

Proof 1. Denote the diameter $[AR]$ of circumcircle $w=\mathbb C(O,R)$ and $\{A,K\}=AM\cap w$ . Is well known that $M\in HR$ and $MH=MR$ , where $H$ is the

orthocenter. In the isosceles triangle $AKO$ apply the inequality $AK\le 2\cdot AO\iff$ $MA+MK\le 2R$ . Since $MA\cdot MK=MB\cdot MC\iff$ $MK=\frac {a^2}{4m_a}$

obtain that $m_a+\frac {a^2}{4m_a}\le 2R\iff$ $4m_a^2+a^2\le 2Rm_a\iff$ $2\left(b^2+c^2\right)-a^2+a^2\le 8Rm_a\iff$ $b^2+c^2\le 4Rm_a$ .

Remark. Apply the theorem of median in $\triangle BCR\ :\ 4\cdot MR^2=2\left(RB^2+RC^2\right)-BC^2=$

$2\left[\left(4R^2-c^2\right)+\left(4R^2-b^2\right)\right]-a^2=$ $16R^2-2\left(b^2+c^2\right)-a^2=$ $16R^2-4m_a^2-2a^2\implies$ $\boxed{MR^2=4R^2-m_a^2-\frac {a^2}2}\ (9)\ .$

Proof 2. Apply in $\triangle AMO$ the inequality $MA\le OM+OA\iff$ $m_a\le R(1+\cos A)\iff$ $\left(m_a-R\right)^2\le R^2\left(1-\sin^2A\right)\iff$

$m_a^2-2Rm_a+R^2\sin^2A\le 0\iff$ $2\left(b^2+c^2\right)-a^2-8Rm_a+a^2\le 0\iff$ $b^2+c^2\le 4Rm_a$ .

Proof 3. Apply in $\triangle MAR$ the inequality $AR\le MA+MR\iff$ $2R\le m_a+MR\iff$ $\left(2R-m_a\right)^2\le MR^2\iff$ $4R^2-4Rm_a+m_a^2\le $

$4R^2-m_a^2-\frac {a^2}2\iff$ $2m_a^2-4Rm_a+\frac {a^2}2\le 0\iff$ $2\left(b^2+c^2\right)-a^2-8Rm_a+a^2\le 0\iff$ $b^2+c^2\le 4Rm_a$ .


P5. The incircle of $\triangle ABC$ touches $BC$ , $CA$ , $AB$ at $(D,E,F)$ respectively. The median $AM$ meet again the circumcircle $\rho =\mathbb C(O,R)$ at $K$ , where $M\in BC$ .

Let $L\in EF\cap DI$ and $\{A,K\}=\{A,M\}\cap\rho$ . Prove that $L\in AM$ and $\left\{\begin{array}{ccccc}
\frac {LE}c & = & \frac {LF}b & = & \frac {EF}{b+c}\\\\ 
\frac {LD}{a+b+c} & = & \frac {LI}a & = & \frac r{b+c}\end{array}\right\|$ and $\left\{\begin{array}{ccccc}
\frac {LM}a & = & \frac {LA}{b+c-a} & = & \frac {m_a}{b+c}\\\\
\frac 1{4m_a} & = & \frac {MK}{a^2} & = & \frac {AK}{2\left(b^2+c^2\right)}\end{array}\right\|$ .


P6. Prove that in any $\triangle ABC$ exists the inequality $\sum\frac {m_a}{a}\ge \frac {s}{R}\ .$ (standard notations).

Proof.

P7. Let $\triangle ABC$ with the lengths $\{m_a,m_b,m_c\}$ of its medians. Find $\{a,b,c\}$ .

Proof 1. Denote the centroid $G$ of $\triangle ABC$ , the midpoint $M$ of $[BC]$ and the symmetrical point $S$ of $G$ w.r.t. $M$ . Observe that $[BM]$ is the median in $\triangle BGS\ ,$

$BM=\frac a2$ and $\left\{\begin{array}{c}
BG=\frac 23\cdot m_b\\\\
GS=\frac 23\cdot m_a\\\\
SB=\frac 23\cdot m_c\end{array}\right|$ . Thus, $4\cdot BM^2=2\left(BG^2+BS^2\right)-GS^2$ $\iff$ $a^2=\frac 49\cdot \left[2\left(m_b^2+m_c^2\right)-m_a^2\right]\iff$ $a=\frac 23\cdot\sqrt {2\left(m_b^2+m_c^2\right)-m_a^2}$ a.s.o.

Proof 2. Solve the system $\left\{\begin{array}{ccc}
-a^2+2b^2+2c^2 & = & 4m_a^2\\\\
2a^2-b^2+2c^2 & = & 4m_b^2\\\\
2a^2+2b^2-c^2 & = & 4m_c^2\end{array}\right|$ . Obtain that $\Delta =\left|\begin{array}{ccc}
-1 & 2 & 2\\\\
2 & -1 & 2\\\\
2 & 2 & -1\end{array}\right|=27$ and $\Delta_a =4\cdot \left|\begin{array}{ccc}
m_a^2 & 2 & 2\\\\
m_b^2 & -1 & 2\\\\
m_c^2 & 2 & -1\end{array}\right|=$

$12\cdot\left[2\left(m_b^2+m_c^2\right)-m_a^2\right]\implies$ $a^2=\frac {\Delta_a}{\Delta}=\frac 49\cdot \left[2\left(m_b^2+m_c^2\right)-m_a^2\right]\implies$ $a=\frac 23\cdot\sqrt {2\left(m_b^2+m_c^2\right)-m_a^2}$ a.s.o.


P8. Let $ ABC$ be a triangle so that $ b\ne c$ . The medians $ AD$ , $ BE$ , $ CF$ ( where $ D\in BC$ , $ E\in CA$ , $ F\in AB$ )

intersect again the circumcircle $ w$ of $ ABC$ at $ L$ , $ M$ , $ N$ respectively. Prove that $ LM = LN\ \Longleftrightarrow\ b^2 + c^2 = 2a^2$ .


Proof. Apply the power of the points $ D$ , $ E$ , $ F$ w.r.t. circle $ w$ :

$ \left\{\begin{array}{ccccc} DL\cdot DA = DB\cdot DC & \implies & LD = \frac {a^2}{4m_a} & \implies & LA = LD + m_a = \frac {b^2 + c^2}{2m_a} \\
 \\
EM\cdot EB = EC\cdot EA & \implies & ME = \frac {b^2}{4m_b} & \implies & MB = ME + m_b = \frac {c^2 + a^2}{2m_b} \\
 \\
FN\cdot FC = FA\cdot FB & \implies & NF = \frac {c^2}{4m_c} & \implies & NC = NF + m_c = \frac {a^2 + b^2}{2m_c}\end{array}\right\}$

Apply the equivalence of areas and Ptolemeu's therem to the quadrilaterals $ ABLC$ , $ BCMA$ , $ CANB$ :

$ \left\{\begin{array}{cccccc} \left\|\begin{array}{c} c\cdot LB = b\cdot LC \\
 \\
b\cdot LB + c\cdot LC = a\cdot LA\end{array}\right\| & \implies & \left\|\begin{array}{c} LB = \frac {ab}{b^2 + c^2}\cdot LA \\
 \\
LC = \frac {ac}{b^2 + c^2}\cdot LA\end{array}\right\| & \implies & \left\|\begin{array}{c} LB = \frac {ab}{2m_a} \\
 \\
LC = \frac {ac}{2m_a}\end{array}\right\| \\
 \\
\left\|\begin{array}{c} a\cdot MC = c\cdot MA \\
 \\
c\cdot MC + a\cdot MA = b\cdot MB\end{array}\right\| & \implies & \left\|\begin{array}{c} MC = \frac {bc}{c^2 + a^2}\cdot MB \\
 \\
MA = \frac {ba}{c^2 + a^2}\cdot MB\end{array}\right\| & \implies & \left\|\begin{array}{c} MC = \frac {bc}{2m_b} \\
 \\
MA = \frac {ba}{2m_b}\end{array}\right\| \\
 \\
\left\|\begin{array}{c} b\cdot NA = a\cdot NB \\
 \\
a\cdot NA + b\cdot NB = c\cdot NC\end{array}\right\| & \implies & \left\|\begin{array}{c} NA = \frac {ca}{a^2 + b^2}\cdot NC \\
 \\
NB = \frac {cb}{a^2 + b^2}\cdot NC\end{array}\right\| & \implies & \left\|\begin{array}{c} NA = \frac {ca}{2m_c} \\
 \\
NB = \frac {cb}{2m_c}\end{array}\right\|\end{array}\right\}$

Apply Ptolemeu's theorem to the quadrilaterals $ LBNC$ , $ LCMB$ :

$ \left\{\begin {array}{c} a\cdot LN = LB\cdot NC + LC\cdot NB = \frac {ab(a^2 + b^2 + c^2)}{4m_am_c} \\
 \\
a\cdot LM = LB\cdot MC + LC\cdot MB = \frac {ac(a^2 + b^2 + c^2)}{4m_am_b}\end{array}\right\}$ . Therefore, $ LN = LM$ $ \Longleftrightarrow$ $ bm_b = cm_c$ $ \Longleftrightarrow$ $ b^2 + c^2 = 2a^2$ .


Generalization. Let $ ABC$ be a triangle, $ b\ne c$ with the circumcircle $ w$ . For an interior point $ P(x,y,z)$ denote the second intersections $ L$ , $ M$ , $ N$ of the

circle $ w$ with $ AP$ , $ BP$ , $ CP$ respectively. Prove that $ LM = LN\ \Longleftrightarrow\ x\left[\left(zb^4 - yc^4\right) + (y - z)b^2c^2\right] = a^2\left[z(x + z)b^2 - y(x + y)c^2\right]$ .


Remark. I denoted by $ P(x,y,z)$ the point $ P$ with the the barycentrical coordinates $ (x,y,z)$ w.r.t. the triangle $ ABC$ . Here are two particular cases.

$ 1.\ \blacktriangleright\ \ P = G(1,1,1)$ - centroid : $ LM = LN\ \Longleftrightarrow\ b^2 + c^2 = 2a^2$ .

$ 2.\ \blacktriangleright\ \ P = I(a,b,c)$ - incenter : $ LM = LN\ \Longleftrightarrow\ \emptyset$ .

a.s.o.

$bm_b=cm_c\iff$ $b^2\cdot 4m_b^2=c^2\cdot 4m_c^2\iff$ $b^2\cdot\left[2\left(a^2+c^2\right)-b^2\right]=c^2\cdot\left[2\left(a^2+b^2\right)-c^2\right]\iff$

$b^2\cdot\left(2a^2-b^2\right)=c^2\cdot\left(2a^2-c^2\right)\iff$ $2a^2\left(b^2-c^2\right)=b^4-c^4\iff$ $2a^2=b^2+c^2$ because $b\ne c$ .



Lemma (well-known). Let $\triangle ABC$ and $ M\in AB$, $ N\in AC$ so that $ BM=CN$. Denote the middlepoints $ X$, $ Y$ of $ [BC]$, $ [MN]$ respectively. Prove that :

If $ BC$ doesn't separate $ M$, $ N$ then $ XY$ is parallel with the internal bisector of $ \widehat{BAC}\ ;$ if $BC$ separates $ M$, $ N$ then $ XY$ is parallel withe the external bisector of $ \widehat{BAC}$.


Proof 1. Denote $ \{D,D'\}\subset BC$ so that the rays $ [AD$, $ [AD'$ are respectively the internal and external bisectors of the angle $ \widehat{B AC}$. Define

the reflection $ P$ of the point $ N$ w.r.t. the point $ X$. Observe that $ MP\parallel XY$, $ PB\parallel AC$, $ MB=NC=PB$, i.e. $ \triangle BMP$ is $ B$- isosceles.

$ \left\{\begin{array}{cccccccc}1\blacktriangleright & m(\widehat{MBP})=B+C & \implies & m(\widehat{BMP})=\frac{A}{2}& \implies & MP\parallel AD & \implies & XY\parallel AD\ .\\\\ 2\blacktriangleright & m(\widehat{MBP})=A & \implies & m(\widehat{BMP})=\frac{B+C}{2}& \implies & MP\parallel AD' & \implies & XY\parallel AD'\ .\end{array}\right\|$

Remark. Let mobile $ M\in AB$, $ N\in AC$ so that $ BM=CN$. Then the geometrical locus of the midpoint of $ [MN]$ is $ AD\cup AD'$.

Proof 2. Let $ \left\{\begin{array}{c}\{M,M'\}\subset AB\\\\ 
\{N,N'\}\subset AC\end{array}\right\|$ so that $\left\{\begin{array}{c}
M\in (AB)\ ,\ N\in (AC)\\\\
BM=BM'\ ,\ CN=CN'\end{array}\right\|$. Denote the midpoints $ X$, $ Y$, $ U$, $ V$ $ Z$ of $[BC]$, $ [MN]$, $ [M'N]$, $ [MN']$, $ [M'N']$ respectively.

Prove easily that $ UYVZ$ is a rhombus ($ UY\parallel VZ\parallel AB$, $ YV\parallel UZ\parallel AC$) and $ X\in UV\cap YZ$. Thus, $ \overline{UXV}\perp \overline{YXZ}$, i.e. $ \overline{YXZ}\parallel AD$ and $ \overline{UXV}\parallel AD'$.

Remark. Let $ ABCD$ be a convex quadrilateral so that $ E\in AB\cap CD$ and $ AB=CD$. Denote the midpoints $ X,Y,U,V$ of $ [BC]$, $ [AD]$, $ [AC]$, $ [BD]$ respectively.

Then $ XY$, $ UV$ are parallel respectively to the internal and external bisectors of $ \widehat{AED}$.



P9. Let $ABC$ be an acute triangle with the centroid $G$ and the circumcircle $w=C(O,R)$ . Denote $\{A,S\}=\{A,G\}\cap w$

and the diameter $[SN]$ of $w$ . Prove that $\boxed{\sqrt{a^2+b^2+c^2}\le 3R\cos\widehat{ASN}}\le 3R$ . Have the equality iff $b^2+c^2=2a^2$ .


Proof. Let the midpoint $M$ of $[BC]$ and $m\left(\widehat{ASN}\right)=\phi$ .Thus, $AS=2R\cos\phi$ and from the power $p_w(G)$ of $G$ w.r.t. $w$ obtain that

$GA\cdot GS=$ $\frac {a^2+b^2+c^2}{9}\implies$ $2R\cos\phi =AS=GA+GS\ge $ $2\sqrt{GA\cdot GS}=$ $2\cdot \sqrt{\frac {a^2+b^2+c^2}{9}}$ $\implies$ $\sqrt {a^2+b^2+c^2}\le$ $3R\cos\phi$ . Have

the equality iff $GA=GS\iff$ $-p_w(G)=GA^2\iff$ $\frac {a^2+b^2+c^2}{9}=\frac {4m_a^2}{9}\iff$ $a^2+b^2+c^2=2\left(b^2+c^2\right)-a^2\iff$ $b^2+c^2=2a^2$ .



P10. $\boxed{\mathrm{Prove\ that}\ (\forall )\ \triangle\ ABC\ \mathrm{exists\ the\ inequality}\ 4m_bm_c\le 2a^2+bc}$ (notatii standard).

Proof 1. $4m_bm_c\le 2a^2+bc\iff$ $4m_b^2\cdot 4m_c^2\le \left(2a^2+bc\right)^2\iff$ $\left[2\left(a^2+c^2\right)-b^2\right]\cdot \left[2\left(a^2+b^2\right)-c^2\right]\le 4a^4+4a^2bc+b^2c^2\iff$ $4\left(a^2+b^2\right)\left(a^2+c^2\right)-2b^2\left(a^2+b^2\right)-$

$2c^2\left(a^2+c^2\right)\le 4a^2\left(a^2+bc\right)\iff$ $2\left(a^2+b^2\right)\left(a^2+c^2\right)-b^2\left(a^2+b^2\right)-c^2\left(a^2+c^2\right)\le 2a^2\left(a^2+bc\right)\iff$ $\cancel 2a^2\left(b^2+c^2\right)+2b^2c^2-\cancel{a^2\left(b^2+c^2\right)}-\left(b^4+c^4\right)\le 2a^2bc\iff$

$a^2\left(b^2+c^2-2bc\right)\le b^4+c^4-2b^2c^2\iff$ $a^2(b-c)^2\le \left(b^2-c^2\right)^2=(b+c)^2(b-c)^2\iff$ $(b-c)^2\left[(b+c)^2-a^2\right]\ge 0\iff$ $4s(s-a)(b-c)^2\ge 0\iff$ $(b-c)^2\ge 0\ ,$ what is true.

Proof 2. Let $\left\{\begin{array}{ccc}
N\in AC & ; & NA=NC\\\
P\in AB & ; & PA=PB\end{array}\right\|$ and apply the Ptolemy's inequality in $BPNC\ :\ BN\cdot CP\le BC\cdot PN+BP\cdot CN\iff$ $m_bm_c\le a\cdot \frac a2+\frac c2\cdot\frac b2\iff \boxed{4m_bm_c\le 2a^2+bc}\ .$


P11 (Adil Abdullayev). Prove that $(\forall )\ \triangle\ ABC$ exists the inequality $\left(m_a+m_b+m_c\right)^2+4r(R-2r)\le (4R+r)^2\ .$ (notatii standard).

Proof. I"ll use the remarkable inequality $\boxed{s^2\le 4R^2+4Rr+3r^2}\ (*)$ and the conclusion of the previous problem $:\ \boxed{4m_bm_c\le 2a^2+bc}\ (1)\ .$ Thus $:\ 4\cdot\sum m_bm_c\ \stackrel{(1)}{\le}\  2\cdot \sum a^2+\sum bc=$

$4\left(s^2-r^2-4Rr\right)+$ $\left(s^2+r^2+4Rr\right)=$ $5s^2-3r^2-12Rr\ \stackrel{(*)}{\le}\ 5\left(4R^2+4Rr+3r^2\right)-3r^2-12Rr=$ $20R^2+8Rr+12r^2$ $\implies$ $\boxed{\sum m_bm_c\le 5R^2+2Rr+3r^2}\ (2)\ .$ Hence $:$

$\underline{\underline{4\left(\sum m_a\right)}}^2=$ $4\sum m_a^2+2\cdot 4\sum m_bm_c\ \stackrel{(2)}{\le}\ 3\sum a^2+8\left(5R^2+2Rr+3r^2\right)=$ $6\left(s^2-r^2-4Rr\right)+8\left(5R^2+2Rr+3r^2\right)\ \stackrel{(*)}{\le}\ 6\left[\left(4R^2+\cancel{4Rr}+3r^2\right)-\left(r^2+\cancel{4Rr}\right)\right]+$

$8\left(5R^2+2Rr+3r^2\right)=$ $\underline{\underline{64R^2+16Rr+36r}}^2\implies$ $\left(\sum m_a\right)^2\le 16R^2+4Rr+9r^2=$ $(4R+r)^2-4r(R-2r)\implies$ $\boxed{\left(\sum m_a\right)^2+4r(R-2r)\le (4R+r)^2}\ .$



P12 (Adil Abdullayev). Prove $(\forall )\ \triangle ABC$ there is the following inequality $:\ \boxed{\frac {\cot A}{s-a}+\frac {\cot B}{s-b}+\frac {\cot C}{s-c}\le\frac 1r-\frac {R-2r}{2Rr}}\ (*)\ .$ (standard notations).

An interesting substitution in the geometry of a triangle. Denote $:\ \left\|\begin{array}{ccccccc}
s-a=x & ; & a=y+z & \implies & x+y+z & = & s\\\\  
s-b=y & ; & b=z+x & \implies & xy+yz+zx & = & r(4R+r)\\\\
s-c=z & ; & c=x+y & \implies & xyz & = & sr^2\end{array}\right\|\ .$ For example $:$

$\blacktriangleright\ \left\|\begin{array}{ccccccc}
2bc\cdot\cos A & = & b^2+c^2-a^2=(x+z)^2+(x+y)^2-(y+z)^2=2[s(s-a)-(s-b)(s-c)] & \implies  & s(s-a)-(s-b)(s-c) & = & bc\cdot \cos A\\\\
bc & = & (x+z)(x+y)=x^2+x(y+z)+yz=x(x+y+z)+yz=s(s-a)+(s-b)(s-c) & \implies & s(s-a)+(s-b)(s-c) & = & bc\end{array}\right\|\implies$

$\left\{\begin{array}{ccccccc}
2s(s-a)=bc(1+\cos A) & \implies & \cancel 2s(s-a)=\cancel 2bc\cdot\cos^2\frac A2 & \implies & \cos\frac A2 & = & \sqrt{\frac {(s(s-a)}{bc}}\\\\
2(s-b)(s-c)=bc(1-\cos A) & \implies & \cancel 2(s-b)(s-c)=\cancel 2bc\cdot \sin^2\frac A2 & \implies & \sin\frac A2 & = & \sqrt{\frac {(s-b)(s-c)}{bc}}\end{array}\right\|\ .$

$\blacktriangleright\ X\equiv \sum\frac {yz}x=\frac 1{xyz}\cdot \sum(yz)^2=\frac 1{sr^2}\cdot\left[\left(\sum yz\right)^2-2xyz(x+y+z)\right]=$ $\frac {\cancel {r^2}(4R+r)^2-2s^2\cancel{r^2}}{s\cancel{r^2}}\implies$ $X=\boxed{\sum\frac {yz}x=\frac {(4R+r)^2-2s^2}s}\ (*)\ .$

Proof. $\sum\frac {\cot A}{s-a}=\sum\frac {b^2+c^2-a^2}{4S(s-a)}=\frac 1{4sr}\cdot \sum\frac {2[x(x+y+z)-yz]}x=$ $\frac 1{2sr}\cdot\sum \left(x+y+z-\frac {yz}x\right)=$ $\frac 1{2sr}\cdot (3s-X)\ \stackrel{(*)}{=}\ \frac 1{2sr}\cdot\left[5s-\frac {(4R+r)^2}s\right].$ So $\sum\frac {\cot A}{s-a}\le \frac {R+2r}{2Rr}\iff$

$\frac 1{\cancel 2s\cancel r}\cdot\left[5s-\frac {(4R+r)^2}s\right]\le \frac {R+2r}{\cancel 2R\cancel r}$ $\iff$ $R\left[5s^2-(4R+r)^2\right]\le s^2(R+2r)\iff$ $s^2(4R-2r)\le R(4R+r)^2\iff$ $\boxed{s^2\le \frac {R(4R+r)^2}{2(2R-r)}}\ ,$ what is
Blundon & Gerretsen's inequality.


P13 (Adil Abdullayev). Prove $(\forall )\ \triangle ABC$ there is the following inequality $:\ \boxed{S\le \frac {s^2}{\sqrt{27+k}}\ ,\ \mathrm{where}\ k=\frac {R-2r}{R-r}}\ .$ (standard notations).

Proof. $S\le \frac {s^2}{\sqrt{27+k}}$ $\iff$ $S^2(27+k)\le s^4\iff$ $ r^2(27+k)\le s^2\iff$ $ r^2\left(27+\frac{R-2r}{R-r}\right)\le s^2\iff$ $r^2\left(28R-29r\right)\le s^2(R-r)\iff$ $\boxed{s^2\ge \frac{r^2(28R-29r)}{R-r}}\ (1)\ .$ Suppose that is

well-known the inequality $\boxed{s^2\ge 16Rr-5r^2}\ (*)\ .$ I"ll prove $\boxed{16Rr-5r^2\ge \frac {r^2(28R-29r)}{R-r}}\ (2)\ .$ Indeed, $16R\cancel r-5r\cancel {^2}\ge \frac {r\cancel{^2}(28R-29r)}{R-r}\iff$ $\left(16R-5r\right)(R-r)\ge r(28R-29r)\ \stackrel{R=tr}{\iff}$

$(16t-5)(t-1)\ge 28t-29\iff$ $16t^2-49t+34\ge 0\iff$ $(t-2)(16t-17)\ge 0\iff t\ge 2\iff R\ge 2r\ ,$ what is true. From the relations $(*)$ and $(2)$ obtain the required inequality $(1)\ .$



P14. https://scontent.fotp3-3.fna.fbcdn.net/v/t1.0-9/21150439_10155064914552833_6318925499382620265_n.jpg?oh=71590900f4f7dd485f267982266a6b8e&oe=5A59174B.

Proof. I''l apply the following simple inequalities $:\ \left\{\begin{array}{cccc}
(a+b)^2 & \le & 2\left(a^2+b^2\right) & (1)\\\\
4ab & \le & (a+b)^2 & (2)\\\\
2s & \le & 3R\sqrt 3 & (3)\end{array}\right\|\ .$ Hence $\frac {ab}{\sqrt {a^2+b^2}}\ \stackrel{(1)}{\le}\
 \frac {ab\sqrt 2}{a+b}\ \stackrel {(2)}{\le}\ \frac {(a+b)\sqrt 2}4\implies$ $\sum\frac {ab}{\sqrt {a^2+b^2}}\le s\sqrt 2\ \stackrel{(3)}{\le}\ \frac {3R\sqrt 6}2\ .$
This post has been edited 145 times. Last edited by Virgil Nicula, Sep 6, 2017, 12:30 PM

Comment

3 Comments

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Here is the file with the proof of the "fantastic" inequality.
Attachments:
10020203.pdf (107kb)
This post has been edited 1 time. Last edited by Virgil Nicula, Jan 23, 2016, 3:33 PM

by Virgil Nicula, Jan 23, 2016, 2:16 PM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
In document (10020203.pdf) is proof only for right inequality. Proof for left inequality is in
" Research in Inequalities " (in Chinese language) by Xi.-G.chu and Xu.-Z.Yang.
In document left inequality is given without proof. It is remark1.
Attachments:

by bitrak, Jan 24, 2016, 5:43 PM

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 406030
  • Total comments: 37
Search Blog
a