Interesting Hexagon
by TelvCohl, Jun 25, 2016, 6:02 AM
In this post, I'll prove some interesting properties of the hexagon
such that
where
is the complex number of
respectively. In the following discussion, I'll only prove the case when
is a convex hexagon (other cases can be proved similarly). In this case, the condition
is equivalent to
and 
![[asy]
import graph; size(18.cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(13); defaultpen(dps); real xmin=8.615206375429189,xmax=22.32975186944826,ymin=-9.595429169027547,ymax=2.111735923073725;
pen yqqqqq=rgb(0.5019607843137255,0.,0.), uuuuuu=rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666), ttttff=rgb(0.2,0.2,1.);
pair A_1=(17.002961963201372,1.0063510159008429), B_1=(11.65609284806018,-6.2616562397523765), C_1=(20.02307942469264,-6.208854542397696), D_0=(-4.192264473328908,8.339457254257692), E_0=(-5.954518799948372,5.796826673092463), F_0=(-2.2280475054943683,5.7438848324763345), Q_0=(-3.5954630407492614,6.584722892746521), A_2=(14.764162301331519,-8.08604490327189), B_2=(19.682949524902266,-1.768043138082691), C_2=(10.06044609258025,-1.0967274775409979), M=(34.66597800004515,-27.343634871832254);
draw(E_0--F_0,linewidth(1.1)); draw(F_0--D_0,linewidth(1.1)); draw(D_0--E_0,linewidth(1.1)); draw(E_0--Q_0,linewidth(1.1)); draw(Q_0--F_0,linewidth(1.1)); draw(Q_0--D_0,linewidth(1.1)); draw(C_2--B_1,linewidth(1.1)); draw(B_1--A_2,linewidth(1.1)); draw(A_2--C_1,linewidth(1.1)); draw(C_1--B_2,linewidth(1.1)); draw(B_2--A_1,linewidth(1.1)); draw(A_1--C_2,linewidth(1.1)); draw(B_1--C_1,linewidth(1.6)+ttttff); draw(C_1--A_1,linewidth(1.6)+ttttff); draw(A_1--B_1,linewidth(1.6)+ttttff); draw(C_2--B_2,linewidth(1.6)+yqqqqq); draw(C_2--A_2,linewidth(1.6)+yqqqqq); draw(A_2--B_2,linewidth(1.6)+yqqqqq);
dot(A_1,linewidth(4.pt)+blue); label("$A_1$",(16.828610157322174,1.2995896535954954),NE*lsf,blue); dot(B_1,linewidth(4.pt)+blue); label("$B_1$",(11.128262756456147,-6.469432207262286),NE*lsf,blue); dot(C_1,linewidth(4.pt)+blue); label("$C_1$",(20.215106865901184,-6.3928146346700006),NE*lsf,blue); dot(D_0,linewidth(3.pt)+blue); dot(E_0,linewidth(3.pt)+blue); dot(F_0,linewidth(3.pt)+blue); dot(Q_0,linewidth(3.pt)+blue); dot(A_2,linewidth(4.pt)+yqqqqq); label("$A_2$",(14.6067005521459,-8.476812609180174),NE*lsf,yqqqqq); dot(B_2,linewidth(4.pt)+yqqqqq); label("$B_2$",(19.87798954649513,-1.5965545903929084),NE*lsf,yqqqqq); dot(C_2,linewidth(4.pt)+yqqqqq); label("$C_2$",(9.687852391721183,-0.8457023789885074),NE*lsf,yqqqqq); dot(M,linewidth(3.pt)+uuuuuu); label("$M$",(6.531208400919028,2.4488532424797826),NE*lsf,uuuuuu);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); currentpicture=yscale(1.0041136873597543)*currentpicture;
[/asy]](//latex.artofproblemsolving.com/9/d/b/9dbf0329dd9bf982d50c3491e974a52e5f75b7d8.png)
Property 1 :
Proof : Let
be the spiral similarity with center
ratio
angle
Since
is fixed under
so
Notice
under
we conclude that
and

Property 2 : There exists a point
such that

Proof : Let
be the Miquel point of the complete quadrilateral with the sides
and
be the point such that
Since
(similar for others), so from Property 1 we conclude that

Remark : Notice if we are given five points, then the sixth point such that the hexagon formed by these six points satisfy
is unique, so the converse of Property 2 is also true. i.e. If there is a point
and six points
such that
then the hexagon
satisfy 
For a given point
and a given line
we denote
as the inversion with center
power
followed by reflection in
From Property 2 we get
and
share the same bisector
swaps
so we get the following important corollary.
Corollary 3 : A hexagon
satisfy
there exists a transformation
swaps

Remark : From Corollary 3 (or Property 1)
the hexagon
also satisfy 
Property 4 :
are concurrent at
are concurrent at
Furthermore, if
is the midpoint of
respectively, then
lie on a circle.
Proof : Let
be the second intersection of
Since
(Property 1), so
lies on
Similarly, we can prove
lies on
so
are concurrent at
Analogously, we can prove
are concurrent at 
Let
be the reflection of
in the midpoint of
respectively. If
is the midpoint of
then
so
Similarly, we can prove
and
On the other hand, it's easy to see the hexagon
satisfy
so from Property 1 we get
From Corollary 3 we know the hexagon
satisfy
so by similar discussion we can prove
hence notice
lies on
we conclude that
are concyclic. 
Corollary 5 : Following 12 hexagons satisfy

Proof : This is the direct consequence of Corollary 3.
By Property 1 we know there exists a point
such that

Property 6 : Let
be the isogonal conjugate of
WRT
Let
be the reflection of
in
respectively. Then

Proof : Let
From
lies on
Analogously, we can prove
lies on
Since
so combining
we get
Similarly, we can prove
and
so we conclude that

Property 7 : Let
be the reflection of
in
respectively. Then
![$ \left | [\triangle A_2B_2C_2] - [\triangle A_4B_4C_4] \right |. $](//latex.artofproblemsolving.com/f/4/0/f40168254822a446b0f3cb3de6719040d3a4f01b.png)
Proof : Let
be the projection of
on
respectively. Clearly,
are concyclic, so
Similarly, we can prove
so from Property 1 we get
Similarly, we can prove
From the generalization at here (post #3) we conclude that ![$$ \left | [ \triangle A_1B_1C_1 ] - [ \triangle A_3B_3C_3 ] \right | = 4 [ \triangle X_1Y_1Z_1 ] = 4 [ \triangle X_2Y_2Z_2 ] = \left | [ \triangle A_2B_2C_2 ] - [ \triangle A_4B_4C_4 ] \right |. \qquad \blacksquare $$](//latex.artofproblemsolving.com/d/5/4/d5492ba7124a97e4afcf34bd6ec43e1d39210285.png)
If a hexagon
satisfy
then we construct the reflection
of
in
respectively and call the fixed point of the inversely similar triangle
the T-center of
WRT
By this definition
is the T-center of
WRT
Similarly, we denote
as the T-center of
WRT
respectively.
Property 8 :
Proof : Since
and
so we conclude that
is the T-center of
WRT

Property 9 :
Proof : Since
so
Similarly, we can prove
so we conclude that

Corollary 10 : The midpoint of
lie on 
Proof : If
is the midpoint of
then by Property 9 we get
so
hence we conclude that
lies on

Property 11 : The points in the following 4-points sets are concyclic.
Proof : Since
so we conclude that
are concyclic. 
Property 12 :
Proof : Since
so we get the hexagon
satisfy
there exists a transformation
swaps
(Property 3). Notice
are concurrent at
and
are concurrent at
(Property 11), so we conclude that
also swaps
and

Property 13 :
Proof : Since the hexagon
satisfy
so from Property 1 we get
Similarly, we can prove
so
Analogously, we can prove
so we conclude that

Corollary 14 : The points in the following 4-points sets are concyclic.


















![[asy]
import graph; size(18.cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(13); defaultpen(dps); real xmin=8.615206375429189,xmax=22.32975186944826,ymin=-9.595429169027547,ymax=2.111735923073725;
pen yqqqqq=rgb(0.5019607843137255,0.,0.), uuuuuu=rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666), ttttff=rgb(0.2,0.2,1.);
pair A_1=(17.002961963201372,1.0063510159008429), B_1=(11.65609284806018,-6.2616562397523765), C_1=(20.02307942469264,-6.208854542397696), D_0=(-4.192264473328908,8.339457254257692), E_0=(-5.954518799948372,5.796826673092463), F_0=(-2.2280475054943683,5.7438848324763345), Q_0=(-3.5954630407492614,6.584722892746521), A_2=(14.764162301331519,-8.08604490327189), B_2=(19.682949524902266,-1.768043138082691), C_2=(10.06044609258025,-1.0967274775409979), M=(34.66597800004515,-27.343634871832254);
draw(E_0--F_0,linewidth(1.1)); draw(F_0--D_0,linewidth(1.1)); draw(D_0--E_0,linewidth(1.1)); draw(E_0--Q_0,linewidth(1.1)); draw(Q_0--F_0,linewidth(1.1)); draw(Q_0--D_0,linewidth(1.1)); draw(C_2--B_1,linewidth(1.1)); draw(B_1--A_2,linewidth(1.1)); draw(A_2--C_1,linewidth(1.1)); draw(C_1--B_2,linewidth(1.1)); draw(B_2--A_1,linewidth(1.1)); draw(A_1--C_2,linewidth(1.1)); draw(B_1--C_1,linewidth(1.6)+ttttff); draw(C_1--A_1,linewidth(1.6)+ttttff); draw(A_1--B_1,linewidth(1.6)+ttttff); draw(C_2--B_2,linewidth(1.6)+yqqqqq); draw(C_2--A_2,linewidth(1.6)+yqqqqq); draw(A_2--B_2,linewidth(1.6)+yqqqqq);
dot(A_1,linewidth(4.pt)+blue); label("$A_1$",(16.828610157322174,1.2995896535954954),NE*lsf,blue); dot(B_1,linewidth(4.pt)+blue); label("$B_1$",(11.128262756456147,-6.469432207262286),NE*lsf,blue); dot(C_1,linewidth(4.pt)+blue); label("$C_1$",(20.215106865901184,-6.3928146346700006),NE*lsf,blue); dot(D_0,linewidth(3.pt)+blue); dot(E_0,linewidth(3.pt)+blue); dot(F_0,linewidth(3.pt)+blue); dot(Q_0,linewidth(3.pt)+blue); dot(A_2,linewidth(4.pt)+yqqqqq); label("$A_2$",(14.6067005521459,-8.476812609180174),NE*lsf,yqqqqq); dot(B_2,linewidth(4.pt)+yqqqqq); label("$B_2$",(19.87798954649513,-1.5965545903929084),NE*lsf,yqqqqq); dot(C_2,linewidth(4.pt)+yqqqqq); label("$C_2$",(9.687852391721183,-0.8457023789885074),NE*lsf,yqqqqq); dot(M,linewidth(3.pt)+uuuuuu); label("$M$",(6.531208400919028,2.4488532424797826),NE*lsf,uuuuuu);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); currentpicture=yscale(1.0041136873597543)*currentpicture;
[/asy]](http://latex.artofproblemsolving.com/9/d/b/9dbf0329dd9bf982d50c3491e974a52e5f75b7d8.png)
Property 1 :

Proof : Let
























Property 2 : There exists a point










Proof : Let





































Remark : Notice if we are given five points, then the sixth point such that the hexagon formed by these six points satisfy



















For a given point




























Corollary 3 : A hexagon







Remark : From Corollary 3 (or Property 1)





Property 4 :






















Proof : Let




























Let






















































Corollary 5 : Following 12 hexagons satisfy


Proof : This is the direct consequence of Corollary 3.

By Property 1 we know there exists a point










Property 6 : Let



















Proof : Let





























































Property 7 : Let









![$ \left | [\triangle A_1B_1C_1] - [\triangle A_3B_3C_3] \right | $](http://latex.artofproblemsolving.com/9/e/c/9ec4f84ade359708cf0d248757b37e7d1c2ae13d.png)

![$ \left | [\triangle A_2B_2C_2] - [\triangle A_4B_4C_4] \right |. $](http://latex.artofproblemsolving.com/f/4/0/f40168254822a446b0f3cb3de6719040d3a4f01b.png)
Proof : Let





















































![$$ \left | [ \triangle A_1B_1C_1 ] - [ \triangle A_3B_3C_3 ] \right | = 4 [ \triangle X_1Y_1Z_1 ] = 4 [ \triangle X_2Y_2Z_2 ] = \left | [ \triangle A_2B_2C_2 ] - [ \triangle A_4B_4C_4 ] \right |. \qquad \blacksquare $$](http://latex.artofproblemsolving.com/d/5/4/d5492ba7124a97e4afcf34bd6ec43e1d39210285.png)
If a hexagon








































Property 8 :

Proof : Since














Property 9 :

Proof : Since















Corollary 10 : The midpoint of





Proof : If




































Property 11 : The points in the following 4-points sets are concyclic.

Proof : Since
























Property 12 :

Proof : Since




















Property 13 :

Proof : Since the hexagon


























Corollary 14 : The points in the following 4-points sets are concyclic.
