Interesting Hexagon

by TelvCohl, Jun 25, 2016, 6:02 AM

In this post, I'll prove some interesting properties of the hexagon $ A_1 C_2 B_1 A_2 C_1 B_2 $ such that $$ \frac{a_1-c_2}{c_2-b_1} \cdot \frac{b_1-a_2}{a_2-c_1} \cdot \frac{c_1-b_2}{b_2-a_1}=-1 \qquad (\spadesuit ) $$where $ a_1, $ $ a_2, $ $ b_1, $ $ b_2, $ $ c_1, $ $ c_2 $ is the complex number of $ A_1, $ $ A_2, $ $ B_1, $ $ B_2, $ $ C_1, $ $ C_2, $ respectively. In the following discussion, I'll only prove the case when $ A_1 C_2 B_1 A_2 C_1 B_2 $ is a convex hexagon (other cases can be proved similarly). In this case, the condition $ (\spadesuit) $ is equivalent to $ \frac{A_1C_2}{C_2B_1} \cdot \frac{B_1A_2}{A_2C_1} \cdot \frac{C_1B_2}{B_2A_1} = 1 $ and $  \measuredangle C_1A_2B_1 + \measuredangle A_1B_2C_1 + \measuredangle B_1C_2A_1 = 360^{\circ}. $
[asy]
import graph; size(18.cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(13); defaultpen(dps); real xmin=8.615206375429189,xmax=22.32975186944826,ymin=-9.595429169027547,ymax=2.111735923073725; 
pen yqqqqq=rgb(0.5019607843137255,0.,0.), uuuuuu=rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666), ttttff=rgb(0.2,0.2,1.); 
pair A_1=(17.002961963201372,1.0063510159008429), B_1=(11.65609284806018,-6.2616562397523765), C_1=(20.02307942469264,-6.208854542397696), D_0=(-4.192264473328908,8.339457254257692), E_0=(-5.954518799948372,5.796826673092463), F_0=(-2.2280475054943683,5.7438848324763345), Q_0=(-3.5954630407492614,6.584722892746521), A_2=(14.764162301331519,-8.08604490327189), B_2=(19.682949524902266,-1.768043138082691), C_2=(10.06044609258025,-1.0967274775409979), M=(34.66597800004515,-27.343634871832254); 
draw(E_0--F_0,linewidth(1.1)); draw(F_0--D_0,linewidth(1.1)); draw(D_0--E_0,linewidth(1.1)); draw(E_0--Q_0,linewidth(1.1)); draw(Q_0--F_0,linewidth(1.1)); draw(Q_0--D_0,linewidth(1.1)); draw(C_2--B_1,linewidth(1.1)); draw(B_1--A_2,linewidth(1.1)); draw(A_2--C_1,linewidth(1.1)); draw(C_1--B_2,linewidth(1.1)); draw(B_2--A_1,linewidth(1.1)); draw(A_1--C_2,linewidth(1.1)); draw(B_1--C_1,linewidth(1.6)+ttttff); draw(C_1--A_1,linewidth(1.6)+ttttff); draw(A_1--B_1,linewidth(1.6)+ttttff); draw(C_2--B_2,linewidth(1.6)+yqqqqq); draw(C_2--A_2,linewidth(1.6)+yqqqqq); draw(A_2--B_2,linewidth(1.6)+yqqqqq); 
dot(A_1,linewidth(4.pt)+blue); label("$A_1$",(16.828610157322174,1.2995896535954954),NE*lsf,blue); dot(B_1,linewidth(4.pt)+blue); label("$B_1$",(11.128262756456147,-6.469432207262286),NE*lsf,blue); dot(C_1,linewidth(4.pt)+blue); label("$C_1$",(20.215106865901184,-6.3928146346700006),NE*lsf,blue); dot(D_0,linewidth(3.pt)+blue); dot(E_0,linewidth(3.pt)+blue); dot(F_0,linewidth(3.pt)+blue); dot(Q_0,linewidth(3.pt)+blue); dot(A_2,linewidth(4.pt)+yqqqqq); label("$A_2$",(14.6067005521459,-8.476812609180174),NE*lsf,yqqqqq); dot(B_2,linewidth(4.pt)+yqqqqq); label("$B_2$",(19.87798954649513,-1.5965545903929084),NE*lsf,yqqqqq); dot(C_2,linewidth(4.pt)+yqqqqq); label("$C_2$",(9.687852391721183,-0.8457023789885074),NE*lsf,yqqqqq); dot(M,linewidth(3.pt)+uuuuuu); label("$M$",(6.531208400919028,2.4488532424797826),NE*lsf,uuuuuu); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); currentpicture=yscale(1.0041136873597543)*currentpicture;
[/asy]
Property 1 : \begin{align*} 
\frac{C_1A_1}{A_1B_1} \cdot \frac{B_1C_2}{C_2A_2} \cdot \frac{A_2B_2}{B_2C_1}  = 1 & , &&  \measuredangle B_1A_1C_1 = \measuredangle B_1C_2A_2 + \measuredangle A_2B_2C_1  , && \measuredangle B_2A_2C_2 = \measuredangle B_2C_1A_1 + \measuredangle A_1B_1C_2 . \\ 
\frac{A_1B_1}{B_1C_1} \cdot \frac{C_1A_2}{A_2B_2} \cdot \frac{B_2C_2}{C_2A_1}  = 1 & , &&  \measuredangle C_1B_1A_1 = \measuredangle C_1A_2B_2 + \measuredangle B_2C_2A_1  , && \measuredangle C_2B_2A_2 = \measuredangle C_2A_1B_1 + \measuredangle B_1C_1A_2 . \\ 
\frac{B_1C_1}{C_1A_1} \cdot \frac{A_1B_2}{B_2C_2} \cdot \frac{C_2A_2}{A_2B_1}  = 1 & , &&  \measuredangle A_1C_1B_1 = \measuredangle A_1B_2C_2 + \measuredangle C_2A_2B_1  , && \measuredangle A_2C_2B_2 = \measuredangle A_2B_1C_1 + \measuredangle C_1A_1B_2 . 
  \end{align*}
Proof : Let $ \mathcal{S}(P,\lambda , \theta) $ be the spiral similarity with center $ P, $ ratio $ \lambda, $ angle $ \theta. $ Since $ A_1 $ is fixed under $ \mathcal{S}(C_2,\frac{C_2A_2}{C_2B_1}, \measuredangle B_1C_2A_2) $ $ \circ $ $ \mathcal{S}(B_2,\frac{B_2C_1}{B_2A_2}, \measuredangle A_2B_2C_1), $ so $$ \mathcal{S}(C_2,\frac{C_2A_2}{C_2B_1}, \measuredangle B_1C_2A_2) \circ \mathcal{S}(B_2,\frac{B_2C_1}{B_2A_2}, \measuredangle A_2B_2C_1) = \mathcal{S}(A_1, \frac{C_2A_2}{C_2B_1} \cdot \frac{B_2C_1}{B_2A_2}, \measuredangle B_1C_2A_2 + \measuredangle A_2B_2C_1). $$Notice $ B_1 $ $ \mapsto $ $ C_1 $ under $ \mathcal{S}(C_2,\frac{C_2A_2}{C_2B_1}, \measuredangle B_1C_2A_2) $ $ \circ $ $ \mathcal{S}(B_2,\frac{B_2C_1}{B_2A_2}, \measuredangle A_2B_2C_1) $ we conclude that $ \frac{B_1C_2}{C_2A_2} \cdot \frac{A_2B_2}{B_2C_1} $ $ = $ $ \frac{A_1B_1}{C_1A_1} $ and $ \measuredangle B_1A_1C_1 $ $ = $ $ \measuredangle B_1C_2A_2 $ $ + $ $ \measuredangle A_2B_2C_1 . $ $ \qquad \blacksquare $

Property 2 : There exists a point $ M $ such that $ \triangle MB_1C_1 $ $ \stackrel{+}{\sim} $ $ \triangle MC_2B_2, $ $ \triangle MC_1A_1 $ $ \stackrel{+}{\sim} $ $ \triangle MA_2C_2, $ $ \triangle MA_1B_1 $ $ \stackrel{+}{\sim} $ $ \triangle MB_2A_2. $

Proof : Let $ M $ be the Miquel point of the complete quadrilateral with the sides $ B_1C_1, $ $ B_1C_2, $ $ B_2C_1, $ $ B_2C_2 $ and $ A_1^* $ be the point such that $ \triangle MC_1A_1^* $ $ \stackrel{+}{\sim} $ $ \triangle MA_2C_2, $ $ \triangle MA_1^*B_1 $ $ \stackrel{+}{\sim} $ $ \triangle MB_2A_2. $ Since $ \measuredangle B_1A_1^*C_1 $ $ = $ $ \measuredangle B_1A_1^*M $ $ + $ $ \measuredangle MA_1^*C_1 $ $ = $ $ \measuredangle A_2B_2M $ $ + $ $ \measuredangle MC_2A_2 $ $ = $ $ \measuredangle A_2B_2C_1 $ $ + $ $ \measuredangle C_1B_2M $ $ + $ $ \measuredangle MC_2B_1 $ $ + $ $ \measuredangle B_1C_2A_2 $ $ = $ $ \measuredangle B_1C_2A_2 $ $ + $ $ \measuredangle A_2B_2C_1 $ (similar for others), so from Property 1 we conclude that $ A_1^* $ $ \equiv $ $ A_1. $ $ \qquad \blacksquare $

Remark : Notice if we are given five points, then the sixth point such that the hexagon formed by these six points satisfy $ (\spadesuit) $ is unique, so the converse of Property 2 is also true. i.e. If there is a point $ M $ and six points $ A_1, $ $ A_2, $ $ B_1, $ $ B_2, $ $ C_1, $ $ C_2 $ such that $ \triangle MB_1C_1 $ $ \stackrel{+}{\sim} $ $ \triangle MC_2B_2, $ $ \triangle MC_1A_1 $ $ \stackrel{+}{\sim} $ $ \triangle MA_2C_2, $ $ \triangle MA_1B_1 $ $ \stackrel{+}{\sim} $ $ \triangle MB_2A_2, $ then the hexagon $ A_1 C_2 B_1 A_2 C_1 B_2 $ satisfy $ (\spadesuit). $

For a given point $ P $ and a given line $ \ell, $ we denote $ \Phi_{(\varsigma, \ell)}^P $ as the inversion with center $ P, $ power $ \varsigma $ followed by reflection in $ \ell. $ From Property 2 we get $ MA_1 $ $ \cdot $ $ MA_2 $ $ = $ $ MB_1 $ $ \cdot $ $ MB_2 $ $ = $ $ MC_1 $ $ \cdot $ $ MC_2 $ $ = $ $ \eta $ and $ \angle A_1MA_2, $ $ \angle B_1MB_2, $ $ \angle C_1MC_2 $ share the same bisector $ \tau $ $ \Longrightarrow $ $ \Phi_{(\eta, \tau)}^M $ swaps $ (A_1,A_2), $ $ (B_1,B_2), $ $ (C_1,C_2), $ so we get the following important corollary.

Corollary 3 : A hexagon $ A_1 C_2 B_1 A_2 C_1 B_2 $ satisfy $ (\spadesuit) $ $ \Longleftrightarrow $ there exists a transformation $ \Phi_{(\eta, \tau)}^M $ swaps $ (A_1,A_2), $ $ (B_1,B_2), $ $ (C_1,C_2). $

Remark : From Corollary 3 (or Property 1) $ \Longrightarrow $ the hexagon $ A_1C_1B_1A_2C_2B_2, $ $ A_1C_1B_2A_2C_2B_1, $ $ A_1C_2B_2A_2C_1B_1 $ also satisfy $ (\spadesuit). $

Property 4 : $ \odot (A_1B_2C_2), $ $ \odot (A_2B_1C_2), $ $ \odot (A_2B_2C_1), $ $ \odot (A_1B_1C_1) $ are concurrent at $ D_1. $ $ \odot (A_2B_1C_1), $ $ \odot (A_1B_2C_1), $ $ \odot (A_1B_1C_2), $ $ \odot (A_2B_2C_2) $ are concurrent at $ D_2. $ Furthermore, if $ A, $ $ B, $ $ C, $ $ D $ is the midpoint of $ A_1A_2, $ $ B_1B_2, $ $ C_1C_2, $ $ D_1D_2, $ respectively, then $ A, $ $ B, $ $ C, $ $ D $ lie on a circle.

Proof : Let $ D_1 $ be the second intersection of $ \odot (A_2B_1C_2), $ $ \odot (A_2B_2C_1). $ Since $ \measuredangle B_1D_1C_1 $ $ = $ $ \measuredangle B_1D_1A_2 $ $ + $ $ \measuredangle A_2D_1C_1 $ $ = $ $ \measuredangle B_1C_2A_2 $ $ + $ $ \measuredangle A_2B_2C_1 $ $ = $ $ \measuredangle B_1A_1C_1 $ (Property 1), so $ D_1 $ lies on $ \odot (A_1B_1C_1). $ Similarly, we can prove $ D_1 $ lies on $ \odot (A_1B_2C_2), $ so $ \odot (A_1B_2C_2), $ $ \odot (A_2B_1C_2), $ $ \odot (A_2B_2C_1), $ $ \odot (A_1B_1C_1) $ are concurrent at $ D_1. $ Analogously, we can prove $ \odot (A_2B_1C_1), $ $ \odot (A_1B_2C_1), $ $ \odot (A_1B_1C_2), $ $ \odot (A_2B_2C_2) $ are concurrent at $ D_2. $

Let $ A_2^*, $ $ B_2^*, $ $ C_2^* $ be the reflection of $ A_2, $ $ B_2, $ $ C_2 $ in the midpoint of $ B_1C_1, $ $ C_1A_1, $ $ A_1B_1, $ respectively. If $ J $ is the midpoint of $ B_1C_1, $ then $ JB $ $ \stackrel{\parallel}{=} $ $ \tfrac{1}{2} A_1B_2^*, $ $ JC $ $ \stackrel{\parallel}{=} $ $ \tfrac{1}{2} A_1C_2^*, $ so $ BC $ $ \stackrel{\parallel}{=} $ $ \tfrac{1}{2} B_2^*C_2^*. $ Similarly, we can prove $ CA $ $ \stackrel{\parallel}{=} $ $ \tfrac{1}{2} C_2^*A_2^* $ and $ AB $ $ \stackrel{\parallel}{=} $ $ \tfrac{1}{2} A_2^*B_2^*. $ On the other hand, it's easy to see the hexagon $ A_1C_2^*B_1A_2^*C_1B_2^* $ satisfy $ (\spadesuit), $ so from Property 1 we get $ \measuredangle CAB $ $ = $ $ \measuredangle C_2^*A_2^*B_2^* $ $ = $ $ \measuredangle C_2^*B_1A_1 $ $ + $ $ \measuredangle A_1C_1B_2^* $ $ = $ $ \measuredangle C_2A_1B_1 $ $ + $ $ \measuredangle C_1A_1B_2. $ From Corollary 3 we know the hexagon $ D_1B_1C_2D_2B_2C_1 $ satisfy $ (\spadesuit), $ so by similar discussion we can prove $ \measuredangle CDB $ $ = $ $ \measuredangle C_2D_2B_1 $ $ + $ $ \measuredangle C_1D_2B_2, $ hence notice $ D_2 $ lies on $ \odot (A_1B_2C_1), $ $ \odot (A_1B_1C_2) $ we conclude that $ A, $ $ B, $ $ C, $ $ D $ are concyclic. $ \qquad \blacksquare $

Corollary 5 : Following 12 hexagons satisfy $ (\spadesuit). $ \begin{align*} 
 D_1B_1C_1D_2B_2C_2, && D_1B_1C_2D_2B_2C_1, && D_1B_2C_1D_2B_1C_2, && D_1B_2C_2D_2B_1C_1, \\ 
 D_1C_1A_1D_2C_2A_2, && D_1C_1A_2D_2C_2A_1, && D_1C_2A_1D_2C_1A_2, && D_1C_2A_2D_2C_1A_1, \\ 
 D_1A_1B_1D_2A_2B_2, && D_1A_1B_2D_2A_2B_1, && D_1A_2B_1D_2A_1B_2, && D_1A_2B_2D_2A_1B_1.
 \end{align*}
Proof : This is the direct consequence of Corollary 3. $ \qquad \blacksquare $

By Property 1 we know there exists a point $ P_{111} $ such that $ \triangle P_{111}B_1C_1 $ $ \stackrel{+}{\sim} $ $ \triangle A_1C_2B_2, $ $ \triangle P_{111}C_1A_1 $ $ \stackrel{+}{\sim} $ $ \triangle B_1A_2C_2, $ $ \triangle P_{111}A_1B_1 $ $ \stackrel{+}{\sim} $ $ \triangle C_1B_2A_2. $

Property 6 : Let $ Q_{111} $ be the isogonal conjugate of $ P_{111} $ WRT $ \triangle A_1B_1C_1. $ Let $ A_3, $ $ B_3, $ $ C_3 $ be the reflection of $ A_1, $ $ B_1, $ $ C_1 $ in $ B_2C_2, $ $ C_2A_2, $ $ A_2B_2, $ respectively. Then $ \triangle A_1B_1C_1 $ $ \cup $ $ Q_{111} $ $ \stackrel{-}{\sim} $ $ \triangle A_3B_3C_3 $ $ \cup $ $ Q_{111}. $

Proof : Let $ B_1^* $ $ \equiv $ $ B_1Q_{111} $ $ \cap $ $ A_2B_2, $ $ C_1^* $ $ \equiv $ $ C_1Q_{111} $ $ \cap $ $ C_2A_2. $ From $ \measuredangle C_1B_1B_1^* $ $ = $ $ \measuredangle P_{111}B_1A_1 $ $ = $ $ \measuredangle C_1A_2B_1^* $ $ \Longrightarrow $ $ B_1^* $ lies on $ \odot (A_2B_1C_1). $ Analogously, we can prove $ C_1^* $ lies on $ \odot (A_2B_1C_1). $ Since $ \measuredangle B_3C_1^*Q_{111} $ $ = $ $ \measuredangle A_2C_1^*B_1 $ $ + $ $ \measuredangle A_2C_1^*C_1 $ $ = $ $ \measuredangle A_2B_1^*B_1 $ $ + $ $ \measuredangle A_2B_1^*C_1 $ $ = $ $ \measuredangle C_3B_1^*Q_{111}, $ so combining $ \tfrac{C_1^*B_3}{C_1^*Q_{111}} $ $ = $ $ \tfrac{C_1^*B_1}{C_1^*Q_{111}} $ $ = $ $ \tfrac{B_1^*C_1}{B_1^*Q_{111}} $ $ = $ $ \tfrac{B_1^*C_3}{B_1^*Q_{111}} $ we get $ \triangle Q_{111}C_1^*B_3 $ $ \stackrel{+}{\sim} $ $ \triangle Q_{111}B_1^*C_3 $ $ \Longrightarrow $ $ \triangle Q_{111}B_1C_1 $ $ \stackrel{-}{\sim} $ $ \triangle Q_{111}C_1^*B_1^* $ $ \stackrel{+}{\sim} $ $ \triangle Q_{111}B_3C_3. $ Similarly, we can prove $ \triangle Q_{111}C_1A_1 $ $ \stackrel{-}{\sim} $ $ \triangle Q_{111}C_3A_3 $ and $ \triangle Q_{111}A_1B_1 $ $ \stackrel{-}{\sim} $ $ \triangle Q_{111}A_3B_3, $ so we conclude that $ \triangle A_1B_1C_1 $ $ \cup $ $ Q_{111} $ $ \stackrel{-}{\sim} $ $ \triangle A_3B_3C_3 $ $ \cup $ $ Q_{111}. $ $ \qquad \blacksquare $

Property 7 : Let $ A_4, $ $ B_4, $ $ C_4 $ be the reflection of $ A_2, $ $ B_2, $ $ C_2 $ in $ B_1C_1, $ $ C_1A_1, $ $ A_1B_1, $ respectively. Then $ \left | [\triangle A_1B_1C_1] - [\triangle A_3B_3C_3] \right | $ $ = $ $ \left | [\triangle A_2B_2C_2] - [\triangle A_4B_4C_4] \right |. $

Proof : Let $ X_1, $ $ Y_1, $ $ Z_1, $ $ X_2, $ $ Y_2, $ $ Z_2 $ be the projection of $ A_1, $ $ B_1, $ $ C_1, $ $ A_2, $ $ B_2, $ $ C_2 $ on $ B_2C_2, $ $ C_2A_2, $ $ A_2B_2, $ $ B_1C_1, $ $ C_1A_1, $ $ A_1B_1, $ respectively. Clearly, $ B_1, $ $ C_2, $ $ Y_1, $ $ Z_2 $ are concyclic, so $ \measuredangle (Y_1Z_2, A_1B_1) $ $ = $ $ \measuredangle A_2C_2B_1. $ Similarly, we can prove $ \measuredangle (C_1A_1, Y_2Z_1) $ $ = $ $ \measuredangle C_1B_2A_2, $ so from Property 1 we get $ \measuredangle (Y_1Z_2, Y_2Z_1) $ $ = $ $ \measuredangle (Y_1Z_2, A_1B_1) $ $ + $ $ \measuredangle B_1A_1C_1 $ $ + $ $ \measuredangle (C_1A_1, Y_2Z_1) $ $ = $ $ \measuredangle A_2C_2B_1 $ $ + $ $ \measuredangle B_1A_1C_1 $ $ + $ $ \measuredangle C_1B_2A_2 $ $ = $ $ 0^{\circ} $ $ \Longrightarrow $ $ Y_1Z_2 $ $ \parallel $ $ Y_2Z_1. $ Similarly, we can prove $ Z_1X_2 $ $ \parallel $ $ Z_2X_1, $ $ X_1Y_2 $ $ \parallel $ $ X_2Y_1. $ From the generalization at here (post #3) we conclude that $$ \left | [ \triangle A_1B_1C_1 ] - [ \triangle A_3B_3C_3 ] \right | = 4 [ \triangle X_1Y_1Z_1 ] = 4 [ \triangle X_2Y_2Z_2 ] = \left | [ \triangle A_2B_2C_2 ] - [ \triangle A_4B_4C_4 ] \right |. \qquad \blacksquare $$
If a hexagon $ V_1V_6V_3V_2V_5V_4 $ satisfy $ (\spadesuit), $ then we construct the reflection $ V_1^*, $ $ V_3^*, $ $ V_5^* $ of $ V_1, $ $ V_3, $ $ V_5 $ in $ V_4V_6, $ $ V_6V_2, $ $ V_2V_4, $ respectively and call the fixed point of the inversely similar triangle $ \triangle V_1V_3V_5, $ $ \triangle V_1^*V_3^*V_5^* $ the T-center of $ \triangle V_1V_3V_5 $ WRT $ \triangle V_2V_4V_6. $ By this definition $ \Longrightarrow $ $ Q_{111} $ is the T-center of $ \triangle A_1B_1C_1 $ WRT $ \triangle A_2B_2C_2. $ Similarly, we denote $ Q_{211}, $ $ Q_{121}, $ $ Q_{112}, $ $ Q_{122}, $ $ Q_{212}, $ $ Q_{221}, $ $ Q_{222} $ as the T-center of $ \triangle A_2B_1C_1, $ $ \triangle A_1B_2C_1, $ $ \triangle A_1B_1C_2, $ $ \triangle A_1B_2C_2, $ $ \triangle A_2B_1C_2, $ $ \triangle A_2B_2C_1, $ $ \triangle A_2B_2C_2 $ WRT $ \triangle A_1B_2C_2, $ $ \triangle A_2B_1C_2, $ $ \triangle A_2B_2C_1, $ $ \triangle A_2B_1C_1, $ $ \triangle A_1B_2C_1, $ $ \triangle A_1B_1C_2, $ $ \triangle A_1B_1C_1, $ respectively.

Property 8 :\begin{align*} 
Q_{111} \text{ is the T-center of } \triangle B_1C_1D_2, && \triangle A_1C_1D_2, && \triangle A_1B_1D_2 \text{ WRT } \triangle B_2C_2D_1, && \triangle A_2C_2D_1, && \triangle A_2B_2D_1, \text{ respectively}. \\
Q_{211} \text{ is the T-center of } \triangle B_1C_1D_1, && \triangle A_2C_1D_1, && \triangle A_2B_1D_1 \text{ WRT } \triangle B_2C_2D_2, && \triangle A_1C_2D_2, && \triangle A_1B_2D_2, \text{ respectively}. \\
Q_{121} \text{ is the T-center of } \triangle B_2C_1D_1, && \triangle A_1C_1D_1, && \triangle A_1B_2D_1 \text{ WRT } \triangle B_1C_2D_2, && \triangle A_2C_2D_2, && \triangle A_2B_1D_2, \text{ respectively}. \\
Q_{112} \text{ is the T-center of } \triangle B_1C_2D_1, && \triangle A_1C_2D_1, && \triangle A_1B_1D_1 \text{ WRT } \triangle B_2C_1D_2, && \triangle A_2C_1D_2, && \triangle A_2B_2D_2, \text{ respectively}. \\
Q_{122} \text{ is the T-center of } \triangle B_2C_2D_2, && \triangle A_1C_2D_2, && \triangle A_1B_2D_2 \text{ WRT } \triangle B_1C_1D_1, && \triangle A_2C_1D_1, && \triangle A_2B_1D_1, \text{ respectively}. \\
Q_{212} \text{ is the T-center of } \triangle B_1C_2D_2, && \triangle A_2C_2D_2, && \triangle A_2B_1D_2 \text{ WRT } \triangle B_2C_1D_1, && \triangle A_1C_1D_1, && \triangle A_1B_2D_1, \text{ respectively}. \\
Q_{221} \text{ is the T-center of } \triangle B_2C_1D_2, && \triangle A_2C_1D_2, && \triangle A_2B_2D_2 \text{ WRT } \triangle B_1C_2D_1, && \triangle A_1C_2D_1, && \triangle A_1B_1D_1, \text{ respectively}. \\
Q_{222} \text{ is the T-center of } \triangle B_2C_2D_1, && \triangle A_2C_2D_1, && \triangle A_2B_2D_1 \text{ WRT } \triangle B_1C_1D_2, && \triangle A_1C_1D_2, && \triangle A_1B_1D_2, \text{ respectively}. 
\end{align*}
Proof : Since $ \measuredangle Q_{111}B_1C_1 $ $ = $ $ \measuredangle B_2A_2C_1 $ $ = $ $ \measuredangle B_2D_1C_1 $ and $ \measuredangle Q_{111}C_1B_1 $ $ = $ $ \measuredangle C_2A_2B_1 $ $ = $ $ \measuredangle C_2D_1B_1, $ so we conclude that $ Q_{111} $ is the T-center of $ \triangle D_2B_1C_1 $ WRT $ \triangle D_1B_2C_2. $ $ \qquad \blacksquare $

Property 9 : \begin{align*} 
A_1Q_{111} \parallel A_2Q_{222}, && B_1Q_{111} \parallel B_2Q_{222}, && C_1Q_{111} \parallel C_2Q_{222}, && D_2Q_{111} \parallel D_1Q_{222},\\ 
A_1Q_{112} \parallel A_2Q_{221}, && B_1Q_{112} \parallel B_2Q_{221}, && C_1Q_{112} \parallel C_2Q_{221}, && D_1Q_{112} \parallel D_2Q_{221},\\ 
A_1Q_{121} \parallel A_2Q_{212}, && B_1Q_{121} \parallel B_2Q_{212}, && C_1Q_{121} \parallel C_2Q_{212}, && D_1Q_{121} \parallel D_2Q_{212}, \\
A_1Q_{122} \parallel A_2Q_{211}, && B_1Q_{122} \parallel B_2Q_{211}, && C_1Q_{122} \parallel C_2Q_{211}, && D_2Q_{122} \parallel D_1Q_{211}. 
\end{align*}
Proof : Since $ \measuredangle (A_1B_1, A_1Q_{111}) $ $ = $ $ \measuredangle B_1C_2A_2 $ $ = $ $ \measuredangle (A_1B_1, Y_1Z_2), $ so $ A_1Q_{111} $ $ \parallel $ $ Y_1Z_2. $ Similarly, we can prove $ A_2Q_{222} $ $ \parallel $ $ Y_2Z_1, $ so we conclude that $ A_1Q_{111} $ $ \parallel $ $ A_2Q_{222}. $ $ \qquad \blacksquare $

Corollary 10 : The midpoint of $ Q_{111}Q_{222}, $ $ Q_{211}Q_{122}, $ $ Q_{121}Q_{212}, $ $ Q_{112}Q_{221} $ lie on $ \odot (ABCD). $

Proof : If $ T $ is the midpoint of $ Q_{111}Q_{222}, $ then by Property 9 we get $ BT $ $ \parallel $ $ B_1Q_{111} $ $ \parallel $ $ B_2Q_{222}, $ $ CT $ $ \parallel $ $ C_1Q_{111} $ $ \parallel $ $ C_2Q_{222}, $ so $ \measuredangle CTB $ $ = $ $ \measuredangle C_1Q_{111}B_1 $ $ = $ $ \measuredangle (C_1Q_{111}, C_1A_1) $ $ + $ $ \measuredangle C_1A_1B_1 $ $ + $ $ \measuredangle (A_1B_1, B_1Q_{111}) $ $ = $ $ \measuredangle C_2B_2A_1 $ $ + $ $ \measuredangle C_1A_1B_1 $ $ + $ $ \measuredangle A_1C_2B_2 $ $ = $ $ \measuredangle C_2A_1B_1 $ $ + $ $ \measuredangle C_1A_1B_2 $ $ = $ $ \measuredangle CAB, $ hence we conclude that $ T $ lies on $ \odot (ABCD). $ $ \qquad \blacksquare $

Property 11 : The points in the following 4-points sets are concyclic. \begin{align*} 
(B_1, C_1, Q_{111}, Q_{211}), && (B_1, C_2, Q_{112}, Q_{212}), && (B_2, C_1, Q_{121}, Q_{221}), && (B_2, C_2, Q_{122}, Q_{222}), \\ 
(C_1, A_1, Q_{111}, Q_{121}), && (C_1, A_2, Q_{211}, Q_{221}), && (C_2, A_1, Q_{112}, Q_{122}), && (C_2, A_2, Q_{212}, Q_{222}), \\ 
(A_1, B_1, Q_{111}, Q_{112}), && (A_1, B_2, Q_{121}, Q_{122}), && (A_2, B_1, Q_{211}, Q_{212}), && (A_2, B_2, Q_{221}, Q_{222}), \\ 
(A_1, D_1, Q_{112}, Q_{121}), && (A_1, D_2, Q_{111}, Q_{122}), && (A_2, D_1, Q_{211}, Q_{222}), && (A_2, D_2, Q_{212}, Q_{221}), \\ 
(B_1, D_1, Q_{112}, Q_{211}), && (B_1, D_2, Q_{111}, Q_{212}), && (B_2, D_1, Q_{121}, Q_{222}), && (B_2, D_2, Q_{122}, Q_{221}), \\ 
(C_1, D_1, Q_{121}, Q_{211}), && (C_1, D_2, Q_{111}, Q_{221}), && (C_2, D_1, Q_{112}, Q_{222}), && (C_2, D_2, Q_{122}, Q_{212}). 
\end{align*}
Proof : Since $ \measuredangle B_1Q_{111}C_1 $ $ = $ $ \measuredangle Q_{111}B_1C_1 $ $ + $ $ \measuredangle B_1C_1Q_{111} $ $ = $ $ \measuredangle B_2A_2C_1 $ $ + $ $ \measuredangle B_1A_2C_2 $ $ = $ $ \measuredangle B_1A_2C_1 $ $ - $ $ \measuredangle C_2A_2B_2 $ $ = $ $ \measuredangle B_1C_1Q_{211} $ $ + $ $ \measuredangle Q_{211}B_1C_1 $ $ = $ $ \measuredangle B_1Q_{211}C_1, $ so we conclude that $ B_1, $ $ C_1, $ $ Q_{111}, $ $ Q_{211} $ are concyclic. $ \qquad \blacksquare $

Property 12 :\begin{align*} 
\text{There exists a transformation } \Phi_{(\eta_{111}, \tau_{111})}^{M_{111}} \text{ swaps } (A_1, Q_{211}), && (B_1, Q_{121}), && (C_1, Q_{112}), && (D_1, Q_{111}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{211}, \tau_{211})}^{M_{211}} \text{ swaps } (A_2, Q_{111}), && (B_1, Q_{221}), && (C_1, Q_{212}), && (D_2, Q_{211}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{121}, \tau_{121})}^{M_{121}} \text{ swaps } (A_1, Q_{221}), && (B_2, Q_{111}), && (C_1, Q_{122}), && (D_2, Q_{121}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{112}, \tau_{112})}^{M_{112}} \text{ swaps } (A_1, Q_{212}), && (B_1, Q_{122}), && (C_2, Q_{111}), && (D_2, Q_{112}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{122}, \tau_{122})}^{M_{122}} \text{ swaps } (A_1, Q_{222}), && (B_2, Q_{112}), && (C_2, Q_{121}), && (D_1, Q_{122}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{212}, \tau_{212})}^{M_{212}} \text{ swaps } (A_2, Q_{112}), && (B_1, Q_{222}), && (C_2, Q_{211}), && (D_1, Q_{212}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{221}, \tau_{221})}^{M_{221}} \text{ swaps } (A_2, Q_{121}), && (B_2, Q_{211}), && (C_1, Q_{222}), && (D_1, Q_{221}). \\ 
\text{There exists a transformation } \Phi_{(\eta_{222}, \tau_{222})}^{M_{222}} \text{ swaps } (A_2, Q_{122}), && (B_2, Q_{212}), && (C_2, Q_{221}), && (D_2, Q_{222}).  
\end{align*}
Proof : Since \begin{align*} 
\measuredangle Q_{211}B_1C_1 = \measuredangle B_2A_1C_1, && \measuredangle Q_{121}C_1A_1 = \measuredangle C_2B_1A_1, && \measuredangle Q_{112}A_1B_1 = \measuredangle A_2C_1B_1, \\
\measuredangle Q_{211}C_1B_1 = \measuredangle C_2A_1B_1, && \measuredangle Q_{121}A_1C_1 = \measuredangle A_2B_1C_1, && \measuredangle Q_{112}B_1A_1 = \measuredangle B_2C_1A_1, 
\end{align*}so we get the hexagon $ A_1Q_{121}C_1Q_{211}B_1Q_{112} $ satisfy $ (\spadesuit) $ $ \Longrightarrow $ there exists a transformation $ \Phi_{(\eta_{111}, \tau_{111})}^{M_{111}} $ swaps $ (A_1, Q_{211}), $ $  (B_1, Q_{121}), $ $ (C_1, Q_{112}) $ (Property 3). Notice $ \odot (A_1Q_{121}Q_{112}), $ $ \odot (B_1Q_{112}Q_{211}), $ $ \odot (C_1Q_{211}Q_{121}) $ are concurrent at $ D_1 $ and $ \odot (Q_{211}B_1C_1), $ $ \odot (Q_{121}C_1A_1), $ $ \odot (Q_{112}A_1B_1) $ are concurrent at $ Q_{111} $ (Property 11), so we conclude that $ \Phi_{(\eta_{111}, \tau_{111})}^{M_{111}} $ also swaps $ D_1 $ and $ Q_{111}. $ $ \qquad \blacksquare $

Property 13 :\begin{align*} 
A_1B_1C_1D_1 \stackrel{-}{\sim} Q_{122}Q_{212}Q_{221}Q_{222} , && A_2B_1C_1D_2 \stackrel{-}{\sim} Q_{222}Q_{112}Q_{121}Q_{122} , && A_1B_2C_1D_2 \stackrel{-}{\sim} Q_{112}Q_{222}Q_{211}Q_{212} , && A_1B_1C_2D_2 \stackrel{-}{\sim} Q_{121}Q_{211}Q_{222}Q_{221}, \\ 
A_2B_2C_2D_2 \stackrel{-}{\sim} Q_{211}Q_{121}Q_{112}Q_{111} , && A_1B_2C_2D_1 \stackrel{-}{\sim} Q_{111}Q_{221}Q_{212}Q_{211} , && A_2B_1C_2D_1 \stackrel{-}{\sim} Q_{221}Q_{111}Q_{122}Q_{121} , && A_2B_2C_1D_1 \stackrel{-}{\sim} Q_{212}Q_{122}Q_{111}Q_{112}.  
\end{align*}
Proof : Since the hexagon $ A_2Q_{212}C_2Q_{122}B_2Q_{221} $ satisfy $ (\spadesuit), $ so from Property 1 we get $ \measuredangle Q_{122}Q_{212}Q_{221} $ $ = $ $ \measuredangle Q_{122}C_2B_2 $ $ + $ $ \measuredangle B_2A_2Q_{221} $ $ = $ $ \measuredangle C_1A_2B_2 $ $ + $ $ \measuredangle B_2C_2A_1 $ $ = $ $ \measuredangle C_1B_1A_1. $ Similarly, we can prove $ \measuredangle Q_{212}Q_{221}Q_{122} $ $ = $ $ \measuredangle A_1C_1B_1, $ so $ \triangle A_1B_1C_1 $ $ \stackrel{-}{\sim} $ $ \triangle Q_{122}Q_{212}Q_{221}. $ Analogously, we can prove $ \triangle B_1C_1D_1 $ $ \stackrel{-}{\sim} $ $ \triangle Q_{212}Q_{221}Q_{222}, $ so we conclude that $ A_1B_1C_1D_1 $ $ \stackrel{-}{\sim} $ $ Q_{122}Q_{212}Q_{221}Q_{222}. $ $ \qquad \blacksquare $

Corollary 14 : The points in the following 4-points sets are concyclic. \begin{align*} 
(Q_{122}, Q_{212}, Q_{221}, Q_{222}) , && (Q_{222}, Q_{112}, Q_{121}, Q_{122}) , && (Q_{112}, Q_{222}, Q_{211}, Q_{212}) , && (Q_{121}, Q_{211}, Q_{222}, Q_{221}), \\ 
(Q_{211}, Q_{121}, Q_{112}, Q_{111}) , && (Q_{111}, Q_{221}, Q_{212}, Q_{211}) , && (Q_{221}, Q_{111}, Q_{122}, Q_{121}) , && (Q_{212}, Q_{122}, Q_{111}, Q_{112}).  
\end{align*}

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 56015
  • Total comments: 5
Search Blog
a