1980 USAMO Problems/Problem 5


If $x, y, z$ are reals such that $0\le x, y, z \le 1$, show that $\frac{x}{y + z + 1} + \frac{y}{z + x + 1} + \frac{z}{x + y +  1} \le 1 - (1 - x)(1 - y)(1 - z)$


Rewrite the given inequality so that $1$ is isolated on the right side. Set the left side to be $f(x, y, z)$. Now a routine computation shows

$\frac{\partial^2 f}{\partial x^2} = \frac{2y}{(x + z + 1)^3} + \frac{2z}{(x + y + 1)^3}\geq 0$

which shows that $f$ is convex (concave up) in all three variables. Thus the maxima can only occur at the endpoints, i.e. if and only if $x, y, z \in \{0,1\}$. Checking all eight cases shows that the value of the expression cannot exceed 1.

See Also

1980 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Last Question
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png


Stay Connected

Subscribe to get news and
updates from AoPS, or Contact Us.
© 2015
AoPS Incorporated
Invalid username
Login to AoPS